Вечный двигатель на магнитах своими руками (схема)
Магнитные двигатели – это автономные устройства, которые способны вырабатывать электроэнергию. На сегодняшний день существуют различные модификации, все они отличаются между собой. Основное преимущество двигателей заключается в экономии топлива. Однако недостатки в данной ситуации также следует учитывать. В первую очередь важно отметить, что магнитное поле способно оказывать негативное влияние на человека.
Также проблема заключается в том, что для различных модификаций необходимо создать определенные условия для эксплуатации. Трудности еще могут возникнуть при подключении мотора к устройству. Чтобы разобраться в том, как сделать в домашних условиях вечный двигатель на магнитах, необходимо изучить его конструкцию.
Схема простого двигателя
Стандартный вечный двигатель на магнитах (схема показана выше) включает в себя диск, кожух, а также металлический обтекатель. Катушка во многих моделях используется электрическая. Магниты крепятся на специальных проводниках. Положительная обратная связь обеспечивается за счет работы преобразователя. Дополнительно в некоторых конструкциях встроены ревербераторы для усиления магнитного поля.
Модель на подвеске
Чтобы сделать с подвеской вечный двигатель на неодимовых магнитах своими руками, необходимо использовать два диска. Кожух для них лучше всего подбирать медный. При этом края необходимо тщательно заточить. Далее, важно подсоединить контакты. Всего магнитов на внешней стороне диска должно находиться четыре. Слой диэлектрика обязан проходить вдоль обтекателя. Чтобы исключить возможность появления отрицательной энергии, используются инерционные преобразователи.
В данном случае положительно заряженные ионы обязаны двигаться вдоль кожуха. У некоторых проблема часто заключается в малой холодной сфере. В такой ситуации магниты следует использовать довольно мощные. В конечном итоге выход подогретого агента должен осуществляться через обтекатель. Подвеска устанавливается между дисками на небольшом расстоянии. Источником самозаряда в устройстве является преобразователь.
Как сделать двигатель на кулере?
Как складывается вечный двигатель на постоянных магнитах своими руками? С использованием обычного кулера, который можно взять из персонального компьютера. Диски в данном случае важно подобрать небольшого диаметра. Кожух при этом закрепляется на их внешней стороне. Раму для конструкции можно изготовить из любой коробки. Обтекатели чаше всего используются толщиной 2,2 мм. Выход подогретого агента в данной ситуации осуществляется через преобразователь.
Высота кулоновских сил зависит исключительно от заряженности ионов. Чтобы повысить параметр охлажденного агента, многие специалисты советуют использовать изолированную обмотку. Проводники для магнитов целесообразнее подбирать медные. Толщина токопроводящего слоя зависит от типа обтекателя. Проблема данных двигателей часто заключается в малой отрицательной заряженности. В данном случае диски для модели лучше всего взять большего диаметра.
Модификация Перендева
При помощи статора большой мощности можно сложить данный вечный двигатель на магнитах своими руками (схема показа ниже). Сила электромагнитного поля в этой ситуации зависит от многих факторов. В первую очередь следует учитывать толщину обтекателя. Также важно заранее подобрать небольшой кожух. Пластину для двигателя необходимо использовать толщиной не более 2,4 мм. Преобразователь на это устройство устанавливается низкочастотный.
Дополнительно следует учитывать, что ротор подбирается только последовательного типа. Контакты на нем установлены чаще всего алюминиевые. Пластины для магнитов необходимо предварительно прочистить. Сила резонансных частот будет зависеть исключительно от мощности преобразователя.
Чтобы усилить положительную обратную связь, многие специалисты рекомендуют воспользоваться усилителем промежуточной частоты. Устанавливается он на внешнюю сторону пластины возле преобразователя. Для усиления волновой индукции применяются спицы небольшого диаметра, которые закрепляются на диске. Отклонение фактической индуктивности происходит при вращении пластины.
Устройство с линейным ротором
Линейные роторы обладают довольно высоким образцовым напряжением. Пластину для них целесообразнее подбирать большую. Стабилизация проводящего направления может осуществляться за счет установки проводника (чертежи вечного двигателя на магнитах показаны ниже). Спицы для диска следует использовать стальные. На инерционный усилитель желательно устанавливать преобразователь.
Усилить магнитное поле в данном случае можно только за счет увеличения количества магнитов на сетке. В среднем их там устанавливается около шести. В этой ситуации многое зависит от скорости аберрации первого порядка. Если наблюдается в начале работы некоторая прерывистость вращения диска, то необходимо заменить конденсатор и установить новую модель с конвекционным элементом.
Сборка двигателя Шконлина
Вечный двигатель данного типа собрать довольно сложно. В первую очередь следует заготовить четыре мощных магнита. Патина для данного устройства подбирается металлическая, а диаметр ее должен составлять 12 см. Далее необходимо использовать проводники для закрепления магнитов. Перед применением их необходимо полностью обезжирить. С этой целью можно воспользоваться этиловым спиртом.
Следующим шагом пластины устанавливаются на специальную подвеску. Лучше всего ее подбирать с затупленным концом. Некоторые в данном случае используют кронштейны с подшипниками для увеличения скорости вращения. Сеточный тетрод в вечный двигатель на мощных магнитах крепится напрямую через усилитель. Увеличить мощность магнитного поля можно за счет установки преобразователя. Ротор в этой ситуации необходим только конвекционный. Термооптические свойства у данного типа довольно хорошие. Справиться с волновой аберрацией в устройстве позволяет усилитель.
Антигравитационная модификация двигателя
Антигравитационный вечный двигатель на магнитах является наиболее сложным устройством среди всех представленных выше. Всего пластин в нем используется четыре. На внешней их стороне закрепляются диски, на которых находятся магниты. Все устройство необходимо уложить в корпус для того, чтобы выровнять пластины. Далее важно закрепить на модели проводник. Подсоединение к мотору осуществляется через него. Волновая индукция в данном случае обеспечивается за счет нехроматического резистора.
Преобразователи у этого устройства используются исключительно низкого напряжения. Скорость фазового искажения может довольно сильно меняться. Если диски вращаются прерывисто, необходимо уменьшить диаметр пластин. В данном случае отсоединять проводники не обязательно. После установки преобразователя к внешней стороне диска прикладывается обмотка.
Модель Лоренца
Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.
Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.
Как сделать двигатель Тесла?
Работа данного двигателя основывается на изменении положения магнитов. Происходит это за счет вращения диска. Для того чтобы увеличить кулоновскую силу, многие специалисты рекомендуют пользоваться медными проводниками. В таком случае вокруг магнитов образуется инерционное поле. Нехроматические резисторы в данной ситуации используются довольно редко. Преобразователь в устройстве крепится над обтекателем и соединяется с усилителем. Если движения диска в конечном счете являются прерывистыми, значит, необходимо катушку использовать более мощную. Проблемы с волновой индукцией, в свою очередь, решаются за счет установки дополнительной пары магнитов.
Реактивная модификация двигателя
Для того чтобы сложить реактивный вечный двигатель на магнитах, необходимо использовать две катушки индуктивности. Пластины в данном случае следует подбирать диаметром около 13 см. Далее необходимо использовать преобразователь низкой частоты. Все это в конечном счете значительно увеличит силу магнитного поля. Усилители в двигателях устанавливаются довольно редко. Аберрация первого порядка происходит за счет использования стабилитронов. Для того чтобы надежно закрепить пластину, необходимо использовать клей.
Перед установкой магнитов контакты тщательно зачищаются. Генератор для данного устройства необходимо подбирать индивидуально. В данном случае многое зависит от параметра порогового напряжения. Если устанавливать конденсаторы перекрытия, то они значительно снижают порог чувствительности. Таким образом, ускорение пластины может быть прерывистым. Диски для указанного устройства необходимо по краям зачищать.
Модель при помощи генератора на 12 В
Применение генератора на 12 В позволяет довольно просто собрать вечный двигатель на неодимовых магнитах. Преобразователь для него необходимо использовать хроматический. Сила магнитного поля в данном случае зависит от массы пластин. Для увеличения фактической индуктивности многие специалисты советуют применять специальные операционные усилители.
Подсоединяются они напрямую к преобразователям. Пластину необходимо использовать только с медными проводниками. Проблемы с волновой индукцией в данной ситуации решить довольно сложно. Как правило, проблема чаще всего заключается в слабом скольжении диска. Некоторые в сложившейся ситуации советуют устанавливать подшипники в вечный двигатель на неодимовых магнитах, которые крепятся к подвеске. Однако сделать это порой невозможно.
Использование генератора на 20 В
Сделать при помощи генератора на 20 В вечный двигатель на магнитах своими руками можно, имея мощную катушку индуктивности. Пластины для данного устройства целесообразнее подбирать небольшого диаметра. При этом диск важно надежно закрепить на спицы. Чтобы увеличить силу магнитного поля, многие специалисты рекомендуют устанавливать в вечный двигатель на постоянных магнитах низкочастотные преобразователи.
В этой ситуации можно надеяться на быстрый выход охлажденного агента. Дополнительно следует отметить, что добиться большой кулоновской силы у многих получается за счет установки плотного обтекателя. Температура окружающей среды на скорость вращения влияет, однако незначительно. Магниты на пластине следует устанавливать на расстоянии 2 см от края. Спицы в данном случае необходимо крепить с промежутком 1,1 см.
Все это в конечном счете позволит уменьшить отрицательное сопротивление. Операционные усилители в двигателях устанавливаются довольно часто. Однако для них необходимо подбирать отдельные проводники. Лучше всего их устанавливать от преобразователя. Чтобы не произошла волновая индукция, прокладки следует использовать прорезиненные.
Применение низкочастотных преобразователей
Низкочастотные преобразователи в двигателях способны эксплуатироваться только вместе с хроматическими резисторами. Приобрести их можно в любом магазине электроники. Пластину для них следует подбирать толщиной не более 1,2 мм. Также важно учитывать, что низкочастотные преобразователи довольно требовательны к температуре окружающей среды.
Увеличить кулоновские силы в сложившейся ситуации получится за счет установки стабилитрона. Крепить его следует за диском, чтобы не произошла волновая индукция. Дополнительно важно позаботиться об изоляции преобразователя. В некоторых случаях он приводит к инерционным сбоям. Все это происходит за счет изменения внешней холодной среды.
Магнитный вечный двигатель делаем своими руками
Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.
Что такое магнитный двигатель
В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.
Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.
Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.
И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.
На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:
- Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
- Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
- Устройства, объединяющие в себе принципы работы обоих двигателей.
Устройство магнитного двигателя
Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:
- Сам двигатель;
- Статор с электромагнитом;
- Ротор с установленным постоянным магнитом.
На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.
Принцип работы
Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.
Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.
Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.
Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.
С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.
А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.
Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.
Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.
Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.
Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.
Линейный двигатель своими руками
Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.
Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.
Плюсы и минусы магнитных двигателей
Плюсы:
- Экономия и полная автономия;
- Возможность собрать двигатель из подручных средств;
- Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
- Способен на любой стадии износа выдавать максимальную мощность.
Минусы:
Негативное влияние магнитных полей на человека;
- Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
- Сложности в подключении даже готовых образцов;
- Современные магнитные импульсные моторы имеют довольно высокую цену.
Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.