Меню

Технология ремонта тягового двигателя курсовая работа

Технология ремонта якоря тягового электродвигателя

Автор работы: Пользователь скрыл имя, 07 Июля 2013 в 18:02, курсовая работа

Описание работы

Днем рождения электрической тяги принято считать 31 мая 1879 г., когда на промышленной выставке в Берлине демонстрировалась первая электрическая железная дорога длиной 300 м, построенная Вернером Сименсом. Электровоз, напоминавший современный электрокар, приводился в движение электродвигателем мощностью 9,6 кВт (13 л. с.). Электрический ток напряжением 160. В передавался к двигателю по отдельному контактному рельсу, обратным проводом служили рельсы, по которым двигался поезд — три миниатюрных вагончика со скоростью 7 км/ч, скамейки вмещали 18 пассажиров. В том же 1879 г. была пущена внутризаводская линия электрической железной дороги протяженностью примерно 2 км на текстильной фабрике Дюшен-Фурье в г. Брейль во Франции.

Содержание работы

Введение. Цель и задачи работы……………………………………………….2
Краткая характеристика тягового электродвигателя ТЛ-2К…..…………..
1.1Назначение и технические данные ТЛ-2К…………………………………….
1.2 Принцип работы…………………………………………………………….
1.3 Устройство ТЛ-2К…………………………………………………………..
2 Ремонт якоря в объеме ТР-3……. ………….……. ………..
2.1 Очистка якоря . …………………… …..…………
2.2 Дефектировка . …………………………………………….….
2.3 Осмотр и ремонт механической части якоря . ……
2.4 Осмотр и ремонт коллектора . ……………………..
2.5 Ремонт обмотки якоря . ………………………………………………
3 Техника безопасности при ремонте электрооборудования……………….
Заключение………………………………………………………………………
Литература……………………………………………………………………….

Файлы: 1 файл

курсовая работа 4.docx

Технология ремонта якоря тягового электродвигателя.

Введение. Цель и задачи работы……………………………………………….2

  1. Краткая характеристика тягового электродвигателя ТЛ-2К…..…………..

1.1Назначение и технические данные ТЛ-2К…………………………………….

2 Ремонт якоря в объеме ТР-3……. ………….……. ………..

2.3 Осмотр и ремонт механической части якоря . . ……

2.4 Осмотр и ремонт коллектора . . ……………………..

3 Техника безопасности при ремонте электрооборудования……………….

ВВЕДЕНИЕ. ИСТОРИЯ ЭЛЕКТРИЧЕСКОЙ ТЯГИ

Днем рождения электрической тяги принято считать 31 мая 1879 г., когда на промышленной выставке в Берлине демонстрировалась первая электрическая железная дорога длиной 300 м, построенная Вернером Сименсом. Электровоз, напоминавший современный электрокар, приводился в движение электродвигателем мощностью 9,6 кВт (13 л. с.). Электрический ток напряжением 160. В передавался к двигателю по отдельному контактному рельсу, обратным проводом служили рельсы, по которым двигался поезд — три миниатюрных вагончика со скоростью 7 км/ч, скамейки вмещали 18 пассажиров. В том же 1879 г. была пущена внутризаводская линия электрической железной дороги протяженностью примерно 2 км на текстильной фабрике Дюшен-Фурье в г. Брейль во Франции. В 1880 г. в России Ф. А. Пироцкому удалось электрическим током привести в движение большой тяжелый вагон, вмещавший 40 пассажиров. 16 мая 1881 г. было открыто пассажирское движение на первой городской электрической железной дороге Берлин — Лихтерфельд. Рельсы этой дороги были уложены на эстакаде. Несколько позже электрическая железная дорога Эльберфельд — Бремен соединила ряд промышленных пунктов Германии. Первоначально электрическая тяга применялась на городских трамвайных линиях и промышленных предприятиях, особенно на рудниках и в угольных копях. Но очень скоро оказалось, что она выгодна на перевальных и тоннельных участках железных дорог, а также в пригородном движении. В 1895 г. в США были электрифицированы тоннель в Балтиморе и тоннельные подходы к Нью-Йорку. Для этих линий построены электровозы мощностью 185 кВТ (50 км/ч). После первой мировой войны на путь электрификации железных дорог вступают многие страны. Электрическая тяга начинает вводиться на магистральных линиях с большой плотностью движения. В Германии электрифицируют линии Гамбург — Альтон, Лейпциг — Галле — Магдебург, горную дорогу в Силезии, альпийские дороги в Австрии. Электрифицирует северные дороги Италия. Приступают к электрификации Франция, Швейцария. В Африке появляется электрифицированная железная дорога в Конго. В России проекты электрификации железных дорог имелись еще до первой мировой войны. Уже начали электрификацию линии. С.-Петербург — Ораниенбаум, но война помешала ее завершить. И только в 1926 г. было открыто движение электропоездов между Баку и нефтепромыслом Сабунчи.16 августа 1932 г. вступил в строй первый магистральный электрифицированный участок Хашури — Зестафони, проходящий через Сурамский перевал на Кавказе. В этом же году в СССР был построен первый отечественный электровоз серии Сс. Уже к 1935 г. в СССР было электрифицировано 1907 км путей и находилось в эксплуатации 84 электровоза.

В настоящее время общая протяженность электрических железных дорог во всем мире достигла 200 тыс. км, что составляет примерно 20% общей их длины. Это, как правило, наиболее грузонапряженные линии, горные участки с крутыми подъемами и многочисленными кривыми участками пути, пригородные узлы больших городов с интенсивным движением электропоездов. Техника электрических железных дорог за время их существования изменилась коренным образом, сохранился только принцип действия. Применяется привод осей локомотива от электрических тяговых двигателей, которые используют энергию электростанций. Эта энергия подводится от электростанций к железной дороге по высоковольтным линиям электропередачи, а к электроподвижному составу — по контактной сети. Обратной цепью служат рельсы и земля. Применяются три различные системы электрической тяги — постоянного тока, переменного тока пониженной частоты и переменного тока стандартной промышленной частоты 50 Гц. В первой половине текущего столетия до второй мировой войны применялись две первые системы, третья получила признание в 50-60-х годах, когда началось интенсивное развитие преобразовательной техники и систем управления приводами. В системе постоянного тока к токоприемникам электроподвижного состава подводится ток напряжением 3000 В (в некоторых странах 1500 В и ниже). Такой ток обеспечивают тяговые подстанции, на которых переменный ток высокого напряжения общепромышленных энергосистем понижается до нужного значения и выпрямляется мощными полупроводниковыми выпрямителями. Достоинством системы постоянного тока в то время была возможность применения коллекторных двигателей постоянного тока, обладающих превосходными тяговыми и эксплуатационными свойствами. А к числу ее недостатков относится сравнительно низкое значение напряжения в контактной сети, ограниченное допустимым значением напряжения двигателей. По этой причине по контактным проводам передаются значительные токи, вызывая потери энергии и затрудняя процесс токосъема в контакте между проводом и токоприемником. Интенсификация железнодорожных перевозок, увеличение массы поездов привели на некоторых участках постоянного тока к трудностям питания электровозов из-за необходимости увеличения площади поперечного сечения проводов контактной сети (подвешивание второго усиливающего контактного провода) и обеспечения эффективности токосъема.

Читайте также:  Масло двигателя тойота характеристики

Все же система постоянного тока получила широкое распространение во многих странах, более половины всех электрических линий работают по такой системе. Задача системы тягового электроснабжения — обеспечить эффективную работу электроподвижного состава с минимальными потерями энергии и при возможно меньших затратах на сооружение и обслуживание тяговых подстанций, контактной сети, линий электропередачи и т. д. Стремлением поднять напряжение в контактной сети и исключить из системы электрического питания процесс выпрямления тока объясняется применение и развитие в ряде стран Европы (ФРГ, Швейцария, Норвегия, Швеция, Австрия) системы переменного тока напряжением 15000 В, имеющую пониженную частоту 16,6 Гц. В этой системе на электровозах используют однофазные коллекторные двигатели, имеющие худшие показатели, чем двигатели постоянного тока. Эти двигатели не могут работать на общепромышленной частоте 50 Гц, поэтому приходится применять пониженную частоту. Для выработки электрического тока такой частоты потребовалось построить специальные «железнодорожные» электростанции, не связанные с общепромышленными энергосистемами. Линии электропередачи в этой системе однофазные, на подстанциях осуществляется только понижение напряжения трансформаторами. В отличие от подстанций постоянного тока в этом случае не нужны преобразователи переменного тока в постоянный, в качестве которых применялись ненадежные в эксплуатации, громоздкие и неэкономичные ртутные выпрямители. Но простота конструкции электровозов постоянного тока имела решающее значение, что определило ее более широкое использование. Это и обусловило распространение системы постоянного тока на железных дорогах СССР в первые годы электрификации. Для работы на таких линиях промышленностью поставлялись шестиосные электровозы серии Сс (для железных дорог с горным профилем) и ВЛ19 (для равнинных дорог). В пригородном движении использовались моторвагонные поезда серии Сэ, состоявшие из одного моторного и двух прицепных вагонов. B первые послевоенные годы во многих странах была возобновлена интенсивная электрификация железных дорог. В СССР возобновилось производство электровозов постоянного тока серии ВЛ22. Для пригородного движения были разработаны новые моторвагонные поезда Ср, способные работать при напряжении 1500 и 3000 В. В 50-е годы был создан более мощный восьмиосный электровоз постоянного тока ВЛ8, а затем — ВЛ10 и ВЛ11. В это же время в СССР и Франции были начаты работы по созданию новой более экономичной системы электрической тяги переменного тока промышленной частоты 50 Гц с напряжением в тяговой сети 25 000 В. В этой системе тяговые подстанции, как и в системе постоянного тока, питаются от общепромышленных высоковольтных трехфазных сетей. Но на них нет выпрямителей.

Трехфазное напряжение переменного тока линий электропередачи преобразуется трансформаторами в однофазное напряжение контактной сети 25 000 В, а ток выпрямляется непосредственно на электроподвижном составе. Легкие, компактные и безопасные для персонала полупроводниковые выпрямители, которые пришли на смену ртутным, обеспечили приоритет этой системы. Во всем мире электрификация железных дорог развивается по системе переменного тока промышленной частоты. Для новых линий, электрифицированных на переменном токе частотой 50 Гц, напряжением 25 кВ, были созданы шестиосные электровозы ВЛ60 с ртутными выпрямителями и коллекторными двигателями, а затем восьмиосные с полупроводниковыми выпрямителями ВЛ80 и ВЛ80с. Электровозы ВЛ60 также были переоборудованы на полупроводниковые преобразователи и получили обозначение серии ВЛ60к

В настоящее время основными сериями грузовых электровозов постоянного тока являются ВЛ11, ВЛ10, ВЛ10у и переменного тока ВЛ80к, ВЛ80р, ВЛ80т, ВЛ-80с, ВЛ85. Электровоз ВЛ82М является локомотивом двойного питания. В пассажирском движении эксплуатируются электровозы постоянного тока серий ЧС2,ЧС2Т, ЧС6, ЧС7, ЧС200 и переменного тока ЧС4, ЧС4Т, ЧС8.На Коломенском и Новочеркасском заводах изготовлен восьмиосный пассажирский электровоз переменного тока ЭП200, рассчитанный на скорость движения 200 км/ч.

Для пополнения парка грузовых электровозов, обслуживающих линии, электрифицированные на постянном токе с номинальным напряжением 3000 В, отечественными электровозостроительными заводами в истекших десятой и одиннадцатой пятилетках (1976—1985 гг) строились восьмиосные двухсекционные электровозы трех модификаций ВЛ10, ВЛ10У и ВЛ11, последние две разновидности продолжали изготовляться и в последующие годы.

Узлы и детали экипажной части тягового подвижного состава в наибольшей мере подвержены износу от сил трения и коррозионному, в меньшей мере тепловому, электроэрозионному и другим его видам. В эксплуатации наблюдаются также повреждения, возникающие из-за нарушения технологии изготовления, обработки и сборки деталей, применения материалов и смазок не соответствующих нормативам, поэтому строжайшее соблюдение установленной технологии является непременным условием безотказной работы тягового подвижного состава. Основным видом отказов техники на железной дороге является преждевременный износ трущихся поверхностей. Восстановление работоспособности детали требует меньших затрат по сравнению с износом новых. Для поддержания работоспособности оборудования локомотивов, в частности электрических машин, на железнодорожном транспорте действует система планово-предупредительных мероприятий, включающих проведение осмотров и ремонта после определенного пробега. Практика эксплуатации показала, что одним из трудоемких узлов в ремонте является тяговый электродвигатель локомотива. Восстановительный процесс должен основываться на максимальной механизации технологических установок и приспособлений.

Описать назначение и конструкцию тягового электродвигателя ТЛ-2К1, технологический процесс ремонта якоря тягового электродвигателя, изучить безопасные приёмы труда, меры по экономичному расходованию материалов при ремонте.

1 КРАТКАЯ ХАРАКТЕРИСТИКА ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ТЛ- 2К

Технология ремонта тягового электродвигателя

Автор работы: Пользователь скрыл имя, 26 Февраля 2015 в 14:05, курсовая работа

Читайте также:  Учеба по диагностике двигателей
Описание работы

При ремонте работ в электропроцессах, а к таким относятся цех по ремонту ТЭД, в целях предупреждения травматизма, очень важно строго выполнять и соблюдать организационные мероприятия. На каждом предприятии при отсутствии должности главного энергетика, администрация назначает лицо, ответственное за электрохозяйство, в обязанность которого входят обучение, инструктирование и периодическая проверка знаний персонала предприятия.

Содержание работы

Введение………………………………………………………………………. 3
Конструкция и условия работы тягового электродвигателя…….……5
Конструкция и условия работы…………………………..………..……5
Методы ремонта и повышения надежности………………….…….…10
Периодичность и сроки плановых технических осмотров и ремонтов…………………………………………………………..……………11

Технология выполнения операций по ремонту тягового электродвигателя …………………………………………………………. …13
Основные неисправности тягового электродвигателя, их причины и способы предупреждения………………………………….………………….13
Способы очистки, осмотра и контроля деталей………..……………..16
Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя………………………………………………………………18

Технология ремонта тягового электродвигателя ……. …..…………22
Технология ремонта тягового электродвигателя …………. ………22
Особенности сборки и проведения испытаний…………..…………. 27
Техника безопасности при ремонте и испытаниях………..………….27

Файлы: 1 файл

kursovaya_rabota_1_polugodie.doc

Поточной формой называют такую форму организации ТО и ТР, при которой объем выполняемых работ разбивают на ряд технологически однородных, равных по суммарной трудоёмкости частей и закрепляют их за несколькими специально оборудованными рабочими местами, образующими единую поточную линию. Каждый пост обслуживается специализированной группой рабочих, выполняющих строго установленный вид ремонта конкретных машин, аппаратов и узлов.

При ремонте тяговых электродвигателей электропоездов в основном используется индивидуальный метод ремонта при поточной форме организации ремонтных работ.

1.3. Периодичность и сроки плановых технических осмотров и ремонтов тягового электродвигателя

Для поддержания электропоездов в работоспособном состоянии предусмотрен комплекс мероприятий, важнейшим из которых является ремонт. Система ремонта, определяет порядок поддержания Э.П.С. в работоспособном и исправном состоянии и охватывает такие понятия, как вид технического обслуживания или ремонта, структура ремонтного цикла и периодичность ремонта.

Техническое обслуживание (ТО-1, ТО-2, ТО-3) проводят с целью предупреждения появления неисправностей и поддержания электропоездов в работоспособном состоянии, подлежащем слесарно-гигиеническим нормам, обеспечивающим их бесперебойную работу и безопасность движения.

Текущие ремонты (ТР-1, ТР-2, ТР-3) предназначены для восстановления основных эксплуатационных характеристик и работоспособности ЭПС в соответствующих межремонтных периодах путём ревизии, ремонта и замены отдельных деталей, узлов и агрегатов, регулировки и испытания, частичной модернизации.

Капитальные ремонты (КР-1, КР-2), выполненные на заводах, являются главным средством восстановления ТЭД, восстановление геометрических параметров деталей до чертёжных параметров.

Периодичность ТО, ТР и КР тыс. км.

  1. Технология выполнения операций по ремонту тягового электродвигателя
    1. Основные неисправности тягового электродвигателя, их причины и способы предупреждения

Круговой огонь по коллектору или чрезмерное искрение под щетками, подгар коллектора

Щетки неплотно прилегают к коллекторным пластинам, так как плохо притерты к коллектору

Изоляция между коллекторными пластинами выступает над их поверхностью, коллектор плохо прошлифован Недопустимый износ щеток

Недостаточное или неравномерное усилие прижима щеток Биение коллектора

Низкое качество материала щеток, коллектора и изоляторов Обрыв в обмотке якоря

Короткое замыкание в обмотке дополнительных полюсов

Заклинивает щетка Загрязнен коллектор

Межвитковое замыкание в обмотках якоря или отпаивание секции обмотки якоря от пластин коллектора

Приработать щетки к коллектору при малых скоростях движения

Углубить изоляцию, прорезав ее вдоль канавок коллектора, зачистить и отшлифовать коллектор Заменить щетки

Отрегулировать усилие прижима щеток Проточить и отшлифовать коллектор Заменить щетки, коллектор и изоляторы Отремонтировать двигатель в условиях депо

Выявить поврежденную катушку дополнительного полюса и заменить ее (в депо)

Восстановить свободное перемещение щетки

Отремонтировать якорь в депо

Потеки смазки внутри тягового двигателя

Избыток смазки в подшипнике или подшипник имеет дефект Перекос подшипника

Удалить лишнюю смазку из подшипника и протереть потеки. Если дефект повторится, снять тяговый двигатель с тележки, разобрать подшипниковый узел и заменить подшипник

Устранить перекос, подтянув болты крепления крышки подшипника

Недостаточное количество смазки в подшипнике Дефект подшипника

Снять тяговый двигатель с тележки, разобрать подшипниковый узел, заменить подшипник

Перекрытие током или пробой кронштейна щеткодержателя

Попадание влаги в тяговый двигатель, перенапряжение, чрезмерно загрязнены изолятор или кронштейн щеткодержателя

Протереть тяговый двигатель чистой салфеткой, смоченной бензином, заменить изолятор или кронштейн щеткодержателя

Пробой изоляции обмоток якорей и полюсов

Механическое повреждение изоляции, резкое снижение сопротивления изоляции вследствие частых перенапряжений на двигателях, попадания влаги, пыли и т. д.

Отремонтировать двигатель в депо

Сильное искрение под щетками (срабатывание токовой защиты)

Механическое повреждение изоляции, старение изоляции, снижение сопротивления изоляции вследствие частых перенапряжений

Отключить тяговый двигатель, по прибытии в депо устранить дефект

Чрезмерное нагревание коллектора

Щетки слишком сильно прижаты к коллекторным пластинам. Марка щеток не соответствует предписанной

Отрегулировать усилие прижима щеток Заменить щетки

Чрезмерное нагревание якоря

Замыкание между секциями обмоток якоря или коллекторными пластинами

Отключить тяговый двигатель, по прибытии в депо отремонтировать якорь

Сетки в вентиляционных отверстиях станины порваны, в отверстиях застряли остатки бандажей якоря

Размотались бандажи якоря и часть обломков отброшена в вентиляционные отверстия

Отключить тяговый двигатель, по прибытии в депо отремонтировать его

На моторном вагоне срабатывает реле перегрузки или быстродействующий выключатель, через коллекторный люк или на станине со стороны

вентиляционных отверстий видна копоть

Пробой изоляции соединительных проводов катушек главных и дополнительных полюсов

Отключить тяговый двигатель, по прибытии в депо отремонтировать его

На моторном вагоне срабатывает реле перегрузки или быстродействующий выключатель во время первой поездки после замены тягового двигателя

Неправильный монтаж проводов подключения двигателя

Перемонтировать провода подключения тягового двигателя

Изоляция обмоток якорей и полюсов тяговых двигателей под воздействием тепловых и механических нагрузок в эксплуатации стареет и ее электрическая прочность снижается. Наиболее тяжелые повреждения тяговых электрических машин — пробои изоляции и межвитковые замыкания обмоток якорей. Кроме того, возможны обрывы проводников обмоток, выплавление припоя из петушков коллектора, размотка проволочных бандажей крепления обмотки и разрушение подшипников якоря. Нередко встречаются и другие неисправности якорей тяговых двигателей: низкое сопротивление изоляции, замыкание коллекторных пластин и пробой изоляции коллектора.

Читайте также:  Диагностика машин через андроид

Одна из главных причин преждевременного ремонта тяговых двигателей — неравномерный износ коллекторов. Появление на рабочей поверхности коллектора местных выработок и лысок нарушает нормальную работу щеточного узла, вызывает повышенное искрение и круговой огонь.

Основные, встречающиеся в практике, неисправности полюсов и катушек: замыкания витков и слоев обмоток, низкое сопротивление и пробой изоляции, обрыв и пережог соединительных кабелей, ослабление крепления сердечников и обрыв полюсных болтов. В остовах тяговых двигателей нередки случаи появления трещин, ослабления посадки подшипниковых щитов и букс моторно-осевых подшипников.

Характерные неисправности и износы элементов конструкции.

Последствия возникновения дефекта

Нарушение качества коммутации

Потёки смазки внутрь двигателя

Нарушение качества коммутации, повреждение и пробои изоляции

Пробой изоляции обмоток якоря и полюсов

Резкое снижение сопротивления изоляции; снижается электрическая прочность.

    1. Способы очистки, осмотра и контроля деталей

Мойка остовов и других деталей ТЭД происходит в специальных машинах. В моечной машине смонтирована душевая система, предназначенная для деталей электрических машин, для обмывки их струями с напором не менее 70-80м. вод. ст. Душевая система обеспечивает обмыв деталей одновременно со всех сторон. Камера ванной оборудована приточно-вытяжной вентиляцией для удаления испарений. Обмывка происходит в три стадии: сначала детали обмывают горячей водой 5-7мин, чтобы удалить грязь и прогреть её до температуры , а затем моют каустическим раствором в течение 35-40мин и вновь обмывают горячей водой для удаления щёлочи. Якоря очищают сжатым воздухом и протирают хлопчатобумажной ветошью, сначала смоченной в бензине, а вентиляционные каналы промывают горячим каустическим раствором на специальной машине.

При дефектировании остова ТЭД подвергают внешнему осмотру для выявления трещин, обломов кронштейнов и прочих видимых дефектов. Трещины обнаруживают при помощи лупы 4-6 кратного увеличения. Проверке подлежат все резьбовые и гладкие отверстия. Независимо от вида ремонта ТЭД проверяют диаметры горловин под подшипниковые щиты.

При дефектировании, обязательной проверке подлежат диаметры посадочных поверхностей щитов, их измеряют микрометрическими скобами. Диаметр гнезда под подшипники, проверяют проходным и непроходным калибром. Диаметр и длину лабиринтных отверстий, а также глубину канавок проверяют специальным шаблоном.

При осмотре и дефектировании сердечников полюсов, особое внимание обращают на прочность заклёпок, отсутствие трещин и изломов в боковинах главных полюсов и в диамагнитных угольниках дополнительных полюсов. Проверке подлежат резьбовые отверстия для крепления полюсов к остову. Особое внимание обращают на расщепление листов сердечников полюсов.

Перед снятием полюсов с остова, измеряют омическое сопротивление цепи главных и дополнительных катушек в холодном состоянии, а также проверяют их электрическую прочность изоляции. Пробой изоляции катушек полюсов определяют мегомметром. На отсутствие межвитковых замыканий катушки проверяют специальным прибором, обрыв шин и надлом витков определяют по завышенному сопротивлению.

Вал якоря проверяют магнитным дефектоскопом для обнаружения скрытых трещин или иных дефектов, нарушающих их механическую прочность.

Осматривают и дефектируют обмотку якоря на специальном стенде, обеспечивающем вращение якоря. Электрическую прочность изоляции обмоток якоря проверяют мегомметром, нулевое показание которого указывает на пробой.

При осмотре сердечника якоря особое внимание обращают на следующие дефекты: ослабление и расщепление пакета стали, повреждение поверхности зубцового слоя, криволинейность пазов, прожоги изоляции зубцов, трещины в нажимных шайбах и вентиляторах.

2.3. Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя

При ремонте ТЭД применяется много оборудования и всевозможных приспособлений. Для импульсных испытаний изоляции обмоток якорей ТЭД, применяют импульсную установку типа НУ-57. Она предназначена для определения явных витковых замыканий, слабых мест в межвитковой изоляции, слабых мест в пробое якоря на корпус и т.д. Также применяются стенды, для испытания изоляции якоря на электрическую прочность. Применяются балансировочные станки типа МС-25 с электрическим способом измерения, он определяет смещение центра тяжести якоря относительно оси вращения с точностью до 0,0001см. Для намотки стеклобандажей используют натяжное приспособление для намотки стеклобандажной ленты на обмотку якорей электрических машин. Для калибровки текстолитовых клинов, используют полуавтоматический станок, для запрессовки электроизоляционной пасты – гидравлические установки. Применяются установки для окраски и сушки якорей с системой гидрозащиты. Используются станки для испытаний и динамического формирования коллекторов, стенды для электрических испытаний коллекторов, приспособление опрессовки пластин коллектора, стендов для испытания изоляции катушек ТЭД, установки для испытания изоляции якорных катушек ТЭД.

Тяговые электродвигатели электропоездов разбирают в горизонтальном положении с помощью специального приспособления, которое позволяет совместить сразу две операции — выпрессовку подшипникового щита и выемку якоря (рис. 4.). Устройство состоит из корпуса 2, кольцевого поршня 6, скобы 1 с шарнирным кронштейном 4 и удерживающей втулки 9,

Рис. 4. Приспособление для выпрессовки подшипникового щита и выемки якоря из остова:1 — скоба; 2 — корпус; 3 — шпильки-захваты; 4 — проушина скобы; 5 — упорные винты; 6 — кольцевой поршень; 7— подшипниковый щит; 8 — вал; 9 втулка

которую закрепляют на конусе вала 8. С помощью шпилек 3 подшипниковый щит 7 соединяют с прессом, усилие от которого передается через винты, упирающиеся в остов двигателя.

Правильность установки полюсов в остове определяют по расстоянию между полюсами — по диаметру и между кромками соседних полюсов (рис. 5.), используя специальные шаблоны и приспособления. Приспособление с лимбом и указателем устанавливают на остове тягового двигателя.

Рис. 5. Расстояние, проверяемое в остове тягового двигателя:

Adblock
detector