Возбуждение двигателя постоянного тока. Схемы возбуждения.
Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.
При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.
Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.
Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.
Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.
Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.
Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.
При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.
В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.
В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.
Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.
Двигатель постоянного тока независимого возбуждения (ДПТ НВ)
Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.
Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)
Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)
Уравнение механической характеристики двигателя постоянного тока независимого возбуждения имеет вид
где: n — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.
Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).
Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).
Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механические характеристики называют искусственными .
Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).
При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:
где U — напряжение питания цепи якоря двигателя, В; Iя — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n — частота вращения холостого хода, об/мин.
Частота вращения холостого хода n представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.
На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.
Используемая литература: — Кацман М.М. Справочник по электрическим машинам
Структурная схема двигателя постоянного тока при постоянном потоке возбуждения
Для двигателя постоянного тока (ДПТ) основными уравнениями являются:
— уравнение электрического равновесия ;
— уравнение механического равновесия ;
— уравнение связи .
Рис.5.1. Структурная схема двигателя постоянного тока
Данным уравнениям соответствует структурная схема рис.5.1.
Если , то
,
(Ке = Км в системе СИ).
Из структурной схемы можно вывести ряд передаточных функций, поскольку есть входные сигналы U, MC, Ф, есть внутренние координаты I, M, есть выходная координата w.
Выведем следующие передаточные функции при Ф = const:
,
,
,
.
,
где .
;
;
При корни вещественные отрицательные
;
При корни комплексные.
В первом случае полином может быть записан в следующем виде:
Во втором случае имеем комплексные корни:
.
Характеристический полином получает вид:
,
где ,
.
На рис. 5.2, 5.3, 5.4 представлены ЛАЧХ для четырех выше выведенных передаточных функций ДПТ при . Учтено, что
;
.
Рис.5.2. ЛАЧХ для передаточных функций ДПТ
Рис. 5.3. ЛАЧХ для передаточной функции ДПТ
Рис. 5.4. ЛАЧХ для передаточной функции ДПТ
При комплексных корнях характер ЛАЧХ будет аналогичным, но может появиться небольшой резонансный пик ( находится в пределах от 0,4 и более).
Цепь намагничивания ДПТ можно представить структурной схемой по рис. 5.5, где
— постоянная времени ОВ (находится в пределах 0,5 ··· 4 сек.)
Tвт — постоянная времени вихревых токов в станине и полюсах
— находится из кривой намагничивания;
Рис.5.5. Структурная схема цепи возбуждения ДПТ.
При регулировании потоком ДПТ существенно нелинейное звено. Во — первых, в структуре рис. 5.1 появляются два блока произведения, во-вторых, надо учитывать нелинейность кривой намагничивания.
Следует отметить, что структурная схема ДПТ при Ф = const рассматривается при постоянстве параметров, т. е. в предположении, что реакция якоря полностью скомпенсирована, активное сопротивление и индуктивность якорной цепи постоянны. Для кривой намагничивания пренебрегаем петлей гистерезиса (при регулировании потоком). Обычно пренебрегаем зависимостью МС от скорости вращения. Однако реально все эти влияния есть и они существенны.
Рассчитаем изменения RЯ при изменении температуры обмотки с 20 °С до 90 °С :
Таким образом, активное сопротивление якорной цепи изменяется на 28 % при переходе от начального включения до рабочей температуры в 90 °С.
Сопротивление может быть найдено из каталогов (при приведении к рабочей температуре ).
Сопротивление якорной цепи можно приближенно определить по данным на щитке электрической машины. Полагая, что при работе двигателя в номинальном режиме его постоянные РПОСТ и переменные РПЕР потери равны, получим
;
ρд = (1 ··· 2) % при Р > 100 кВт;
ρд = (2 ··· 5) % при Р = (100 ··· 5) кВт;
ρд = (5 ··· 10) % при Р = (5 ··· 0,5) кВт;
ρд > 10 % при Р = (0,5 ··· 0,1) кВт.
Экспериментально RЯ находится методом амперметра – вольтметра.
Индуктивность якоря изменяется еще больше, чем сопротивление якорной цепи. Ее рассчитывают
,
где: n = 0,1 – 0,2 для машин с компенсационной обмоткой (0,25 – для крупных машин); n=0,6 для машин без компенсационной обмотки; рп – число пар полюсов.
Опыты оказывают, что с изменением тока якоря от 0 до пускового индуктивность якоря уменьшается на 30 – 45%.
Экспериментально LЯ определяется по кривой гашения поля [25]. Обмотка якоря подключается к источнику постоянного тока и в некоторый момент замыкается накоротко.
По осцилографируемой кривой IЯ = f(t) (рис. 5.6) можно рассчитать LЯ по уравнению: ,
откуда .
Рис. 5.6. Экспериментальное определение ТЯ по кривой гашения поля
Индуктивность обмотки якоря при включенной цепи возбуждения на 15 -20 % меньше, чем при отключенной (сказывается насыщение магнитной цепи). Поэтому опыт желательно проводить при включенной цепи возбуждения.
Определение момента инерции двигателя по геометрическим размерам отдельных вращающихся деталей трудоемок и неточен. Поэтому момент инерции определяется экспериментальным путем по кривой выбега и потерям холостого хода. Двигатель разгоняется до некоторой скорости, а затем отключается от сети, осциллографируется кривая выбега (рис. 5.7.).
Рис. 5.7. Определение момента инерции двигателя по кривой выбега.
Затем определяются потери холостого хода при ряде значений скорости, рассчитывается и строится кривая
Момент инерции определяется следующим образом: .
Значение J определяется для нескольких точек, усредняется, в результате достигается достоверность результатов. Данная методика используется в том числе при определении момента инерции всей системы «двигатель – рабочая машина».
Идентификацию (определение математической модели объекта по экспериментальным данным) удобно производить на ЭВМ, вводя в нее массив точек переходных процессов. В настоящее время в наладочных организациях имеются приборы на основе микроЭВМ, в которые через АЦП данные вводятся автоматически и рассчитываются параметры объекта.
Постоянные времени электромеханической системы могут быть определены методами активной идентификации при подаче на вход воздействия периодического характера. В результате получают ЛАЧХ, по сопрягающим частотам которой определяют постоянные времени.