Меню

Схемы замещения асинхронной машины кратко

Схема замещения асинхронного двигателя

При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентной схемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2 ‘ (1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Z н .

Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

Как и у трансформатора, у асинхронного двигателя есть Т-образная схема замещения.

Более удобной при практических расчетах является Г-образная схема замещения.

В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

Величина c1 приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1 уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

Параметры схемы замещения рассматриваются подробнее в статье векторная диаграмма асинхронного двигателя

Схемы замещения асинхронной машины

Для исследования работы асинхронной машины часто используются схемы замещения, которые должны отвечать основным уравнениям ЭДС и токов реальной машины.

Реально обмотки статора и ротора связаны электромагнитно. Схемы, где электромагнитная связь обмоток заменяется электрической, называются схемами замещения асинхронной машины. В теории асинхронных машин используются две схемы замещения: а) Т-образная; б) Г-образная.

Т-образная схема замещения.

В этой схеме замещения сопротивления в разных цепях. Из опыта короткого замыкания обычно определяют их сумму т.е.

Читайте также:  Галилео утилизация автомобиля часть

Поэтому в теории асинхронных машин чаще пользуются Г-образной схемой замещения. При переходе к Г-образной схеме замещения:

1) ток I1 должен оставаться неизменным, т.е. I1 = const.

2) Изменяя скольжение S = 0 ток , т.е. ток должен проходить по тем же сопротивлениям Z1 и Zm.

3) Кроме того параметры первичной обмотки и вторичной обмотки соответственно должны измениться на коэффициент С1 и .

Дата добавления: 2015-08-01 ; просмотров: 537 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Схемы замещения асинхронной машины

Для исследования работы асинхронной машины часто используются схемы замещения, которые должны отвечать основным уравнениям ЭДС и токов реальной машины.

Реально обмотки статора и ротора связаны электромагнитно. Схемы, где электромагнитная связь обмоток заменяется электрической, называются схемами замещения асинхронной машины. В теории асинхронных машин используются две схемы замещения: а) Т-образная; б) Г-образная.

Т-образная схема замещения.

В этой схеме замещения сопротивления в разных цепях. Из опыта короткого замыкания обычно определяют их сумму т.е.

Поэтому в теории асинхронных машин чаще пользуются Г-образной схемой замещения. При переходе к Г-образной схеме замещения:

1) ток I1 должен оставаться неизменным, т.е. I1 = const.

2) При скольжении S = 0 ток , т.е. ток должен проходить по тем же сопротивлениям Z1 и Zm.

3) Кроме того параметры первичной обмотки и вторичной обмотки соответственно должны измениться на коэффициент С1 и .

Г-образная схема замещения

В Г-образной схеме рабочая ветвь и цепь намагничивания независимы, а сопротивления активные и индуктивные можно просуммировать.

В Г-образной схеме замещения

,

где — комплексное число

Ток I1, не должен изменяться, тогда исходя из Т-образной схемы

а, в Г-образной схеме ток

после преобразования получим

,

поэтому параметры статорной обмотки должны умножить на коэффициент С1, а параметры роторной обмотки на (см. Г-образную схему). Покажем связь между током в роторе (Т-образной схемы замещения) с током (Г-образной схемы замещения).

Из Т-образной схемы ток

,

если подставить выражение тока и преобразуем это выражение, тогда получим

,

тогда отношение токов

равно комплексному коэффициенту С1.

Читайте также:  Устройство двигателя автомобиля анимация

т.е. С1 представляет собою отношение напряжения приложенного к двигателю к напряжению на намагничивающем контуре при токе идеального холостого хода (S = 0).

42. Схемы замещения асинхронной машины. Т-образные и г-образные схемы замещения

При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентнойсхемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2‘(1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Zн.

Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

Как и у трансформатора, у асинхронного двигателя есть Т-образная схема замещения.

Более удобной при практических расчетах является Г-образная схемазамещения.

В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

Величина c1приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

Параметры схемы замещения рассматриваются подробнее в статье векторная диаграмма асинхронного двигателя

43. Приведение обмотки ротора к обмотке статора.

Для построения векторной диаграммы осуществим приведение параметров обмотки ротора к параметрам обмотки статора. При этом обмотку ротора с числом фаз m2, обмоточным коэффициентом k2 и числом витков W2заменяют обмоткой с соответствующими параметрами статора m1, k1, W1, соблюдая при этом энергетический баланс в роторе.

Читайте также:  Неисправности инжекторных двигателей газ

Методика приведения параметров асинхронного двигателя аналогична методике приведения вторичной обмотки трансформатора. При этом уравнение обмотки ротора (5.4) примет вид

где ;

44. Механический момент и механическая мощность ад

Как уже говорилось, взаимодействие тока I2 в обмотке ротора с потоком асинхронной машины Ф создает механическую силу, приводящую ротор во вращение. При определении вращающего момента, создаваемого этой силой, необходимо исходить из известного физического соотношения, согласно которому мощность, затрачиваемая на приведение тела во вращение, определяется произведением приложенного к нему момента на скорость вращения данного тела.

Как было указано в § 3, на ротор двигателя через вращающийся магнитный поток Ф передается некоторая электромагнитная мощность, рассчитываемая по формуле (33). Однако не вся мощность, переносимая на ротор магнитным потоком, расходуется на приведение его во вращение, поскольку часть ее тратится на нагревание проводников обмотки ротора.

Механическая мощность двигателя, равная разности электромагнитной мощности и мощности потерь [см. формулу (34)], будет равна произведению вращающего момента на частоту вращения ротора:

где М — момент, Н∙м; n — частота вращения, об/мин.

Частота вращения ротора может быть связана с частотой вращения магнитного поля машины, если вспомнить формулу (9), из которой следует:

Во многих случаях для понимания сущности явлений, происходящих в асинхронной машине, полезно иметь в виду еще одно выражение для вращающего момента. Выше мы уже упоминали, что механическая сила, действующая на проводники ротора, создается в результате взаимодействия тока в проводниках обмотки ротора с магнитным полем. Момент асинхронного двигателя можно рассчитать, зная значение приведенного тока в роторе и потока машины

где ψ2 — угол сдвига между э. д. с. Е’2, наводимой в роторе и током ротора I’2; cм — постоянный коэффициент; Фмакс — магнитный поток, Вб; I’2 — ток ротора, А.

В области малых скольжений асинхронной машины справедливой является приближенная формула

поскольку cos ψ2 при малых скольжениях близок к единице

Adblock
detector