Устройство современного автомобиля
Современные системы электронного автоматического управления различными всевозможными техническими объектами, а также автомобильными бортовыми устройствами, имеют почти одинаковую похожую структуру.
Принцип работы различных датчиков ЭСАУ примерно одинаковый, — преобразование информации о значениях, которые преобразовываются из неэлектрических параметров в электрический сигнал — напряжение, ток, частоту, фазу и т. д. Полученные сигналы перевоплощаются в цифровой код и поступают в специальный микроконтроллер.
Микроконтроллер на основании значений этих сигналов и в соответствии с заложенным в него программным обеспечением принимает решения, управляет через исполнительные механизмы (реле, соленоиды, электродвигатели) объектом.
Возможность совершенствования автомобильных электронных систем во многом зависит от наличия надежных, точных и недорогих датчиков.
В 60-х годах автомобили были оборудованы датчиками давления масла, уровня топлива, температуры, охлаждающей жидкости. Их выходы были подключены к стрелочным или ламповым индикаторам на щитке приборов.
В 70-х годах автомобильные компании начали бороться за уменьшение количества токсичных выбросов из глушителя автомобиля — потребовались дополнительные датчики для управления силовой установкой, которые необходимы для обеспечения нормальной работы электронного зажигания, системы впрыска топлива, трехкомпонентного нейтрализатора, для точного задания соотношения воздух/топливо в рабочей смеси, для минимизации токсичности выхлопных газов.
В 80-х годах начали уделять больше внимания безопасности водителя и пассажиров — появились антиблокировочная система торможения (ABS) и воздушные мешки безопасности.
В силовом агрегате (в ДВС) датчики используются для измерения температуры и давления большинства текучих сред (температура всасываемого воздуха, абсолютное давление во впускном коллекторе, давление масла, температура охлаждающей жидкости, давление топлива в системе впрыска).
Почти ко всем движущимся частям автомобиля подключены датчики скорости или положения (скорость автомобиля, положение дроссельной заслонки, положение коленчатого вала, положение распределительного вала, положение и скорость вращения вала в коробке переключения передач, положение клапана рециркуляции выхлопных газов).
Другие датчики определяют уровень детонации, нагрузку двигателя, пропуски воспламенения, содержание кислорода в выхлопных газах.
Есть датчики, которые определяют положение сидений.
В системе управления климатом (в климат-контроле) используются различные датчики в кондиционере для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом.
После появления антиблокировочной системы торможения и активной подвески потребовались датчики для определения скорости вращения колес, высоты кузова по отношению к шасси, давления в шинах.
Датчики удара и акселерометры нужны для правильного функционирования фронтальных и боковых воздушных мешков безопасности. Для переднего пассажирского сиденья с помощью датчиков определяют наличие пассажира, его вес. Эта информация используется для оптимального наддува мешка безопасности на переднем сиденье. Другие датчики используются для боковых и потолочных воздушных мешков безопасности, а также специальных воздушных мешков для защиты шеи и головы.
На современных автомобилях антиблокировочные системы торможения заменяются более сложными и эффективными системами управления стабильностью движения автомобиля. Возникает необходимость в новых датчиках. Разрабатываются и уже имеются датчики скорости вращения автомобиля вокруг вертикальной оси, датчики для предупреждения столкновений (например радарные), датчики для определения близости других автомобилей, датчики положения рулевого колеса, бокового ускорения, скорости вращения каждого колеса, крутящего момента на валу двигателя и т. д. Управление тормозной системой автомобиля становится частью более общей и эффективной системы электронного управления курсовой устойчивостью и стабильностью движения.
Из сказанного ясно, что сегодня датчики устанавливаются практически во всех системах автомобиля.
На рис. 2.1, а показано наиболее рациональное расположение различных датчиков на автомобиле.
► Датчики автомобильных электронных систем можно классифицировать по трем признакам: принципу действия, типу энергетического преобразования и основному назначению.
По принципу действия датчики подразделяют на электро контактные, потенциометры ческие, оптические, оптоэлектронные, электромагнитные, индуктивные, магниторезистивные, магнитострикционные, фото- и пьезоэлектрические, датчики на эффектах Холла, Доплера, Кармана, Зеебека, Вигоида.
В зависимости от энергетического преобразования (рис. 2.1, б) датчики (Д) бывают активными (поз. 2 на рис. 2.1, б), в которых выходной электрический сигнал (ЭС) возникает как следствие входного неэлектрического воздействия (НВ) без приложения сторонней электрической энергии за счет внутреннего физического эффекта (например фотоэффекта), и пассивными (поз. 3 на рис. 2.1, б), в которых электрический сигнал (ЭС) есть следствие модуляции внешней электрической энергии (ВЭ) управляющим неэлектрическим воздействием (НВ). Например, потенциометрический датчик, показанный па рис. 2.1, б (поз. 5), является пассивным преобразователем угла поворота оси потенциометра (чувствительного элемента ЧЭ) в электрический сигнал. Электрический сигнал (ЭС) появится на выходе потенциометра только после того, как на резистивную дорожку (П) будет подано внешнее напряжение (ВЭ). Следует отметить, что внутри датчика, посредством чувствительного элемента (ЧЭ), всегда имеет место внутреннее преобразование внешнего неэлектрического воздействия (НВ) в промежуточный неэлектрический сигнал (НС), что показано на рис. 2.1, б (поз. 1). Применительно к датчику угла поворота, угловое положение оси потенциометра является неэлектрическим сигналом (НС) на выходе чувствительного элемента. Этому неэлектрическому сигналу (НС) соответствует выходной электрический сигнал (ЭС) датчика, если поданное па резистивную дорожку (П) внешнее напряжение (ВЭ) постоянно (рис. 2.1, б, поз. 4). Линейная характеристика преобразования (рис. 2.1, б, поз. 6) может быть легко изменена на квадратичную, ступенчатую и любую нелинейную с заданной крутизной, что достигается подбором конструктивных размеров (длины, ширины, толщины) резистивной дорожки.
Рис. 2.1, а. Расположение датчиков на автомобиле
1 — датчик конфигурации впускного коллектора с управляемой геометрией, 2 — датчик тахометра, 3 — датчик положения распределительного вала, 4 — датчик нагрузки двигателя, 5 — датчик положения коленчатого вала, 6 — датчик крутящего момента двигателя, 7 — датчик количества масла, 8 — датчик температуры охлаждающей жидкости, 9 — датчик скорости автомобиля,10 — датчик давления масла, 11— датчик уровня охлаждающей жидкости, 12 — радарный датчик системы торможения, 13 — датчик атмосферного давления, 14 — радарный датчик системы предотвращения столкновений, 15 — датчик скорости вращения ведущего вала коробки передач, 16 — датчик выбранной передачи в коробке передач, 17 — датчик давления топлива в рампе форсунок, 18 — датчик скорости вращения руля, 19 — датчик положения педали, 20 — датчик скорости вращения автомобиля относительно вертикальной оси, 21 — датчик противоугонной системы, 22 — датчик положения сиденья, 23 — датчик ускорения при фронтальном столкновении, 24 — датчик ускорения при боковом столкновении, 25 — датчик давления топлива в баке, 26 — датчик уровня топлива в баке, 27 — датчик высоты кузова по отношению к шасси, 28 — датчик угла поворота руля, 29 — датчик дождя или тумана, 30 — датчик температуры забортного воздуха, 31 — датчик веса пассажира, 32 — датчик кислорода, 33 — датчик наличия пассажира в сиденье, 34 — датчик положения дроссельной заслонки, 35 — датчик пропусков воспламенения, 36 — датчик положения клапана рециркуляции выхлопных газов, 37— датчик абсолютного давления в впускном коллекторе, 38 — датчик азимута, 39 — датчик скорости вращения колес, 40 — датчик давления в шинах.
Из приведенного примера ясно, что любой датчик всегда состоит, как минимум, из двух частей — из чувствительного элемента (ЧЭ), способного воспринимать входное неэлектрическое воздействие (НВ), и из преобразователя (П) промежуточного неэлектрического сигнала (НС) от чувствительного элемента в выходной электрический сигнал (ЭС).
По назначению датчики классифицируются по типу управляющего неэлектрического воздействия: датчики краевых положений, датчики угловых и линейных перемещений, датчики частоты вращения и числа оборотов, датчики относительного или фиксированного положения, датчики механического воздействия, датчики давления, датчики температуры, датчики влажности, датчики концентрации кислорода, датчик радиации и др.
► Датчики подключаются к ЭБУ или средствам индикации для передачи информации о параметрах контролируемой среды. В автомобильных системах цепа и надежность имеют огромное значение и при прочих равных условиях всегда выбирают датчик с наименьшим числом соединителей. Если к датчику следует подключить 5—6 проводов (например, ЛДТ), целесообразно разместить микросхему обработки сигнала непосредственно на датчике и передавать данные контроллеру через последовательный интерфейс.
При подключении датчиков к ЭБУ следует иметь в виду, что шасси (масса) автомобиля не может быть использована в качестве измерительной земли. Между точкой подключения ЭБУ к массе и датчиком напряжение может падать до I В за счет токов силовых элементов по массе, что недопустимо как при штатной работе датчика, так и при его диагностике.
Подавляющее большинство датчиков из числа вышеперечисленных уже достаточно широко используется на современных импортных и отечественных автомобилях. Их устройство, работа и принципы диагностирования подробно описаны в [3] и [4|. Но есть и такие, которые появились относительно недавно и находятся на стадии внедрения в новейшие автомобильные системы. Описанию именно таких датчиков уделено наибольшее внимание в данной главе.
Датчики автомобиля — проверяем работоспособность датчиков
Современный автомобиль состоит из множества механических, электромеханических и электронных компонентов. Оптимальная работа двигателя должна обеспечиваться независимо от внешних условий. При изменении внешних факторов, работа узлов и компонентов должна адаптироваться под них. Датчики автомобиля служат своеобразным следящим устройством за работой автомобиля. Рассмотрим основные датчики:
Запишитесь в автосервис и получите квалифицированную помощь специалистов.
1. Датчик температуры в автомобиле — неисправности
Принцип работы датчика температуры охлаждающей жидкости основан на изменении входного сопротивления при изменении температуры диагностируемой среды.
Датчик температуры охлаждающей жидкости установлен на головке блока цилиндров. При неисправном датчике на панели приборов загорается лампочка перегрева ОЖ.
Исправность сенсора определяют по изменению сопротивления между его клеммами в зависимости от степени
нагрева.
2. Датчик коленчатого вала в автомобиле — основные проблемы
Этот электромагнитный датчик, который служит для измерения частоты вращения
коленчатого вала двигателя, основан на электромагнитном принципе Холла.
Где находится датчик коленвала?
Характерным
месторасположением датчика коленчатого вала является нижняя часть блока цилиндров.
Диагностируемым элементом служит специальный сигнальный диск коленчатого
вала двигателя.
Признаками неисправности датчика коленчатого вала являются: нестабильная работа двигателя на холостом ходу, глушение двигателя, возникновение детонации. Для проверки исправности на снятый датчик подключают свою электропроводку и, включив зажигание, замеряют напряжение между массой двигателя и положительным контактом датчика. При кратковременном касании кончика датчика металлического предмета, вольтметр фиксирует напряжение в 5 вольт. При неисправном датчике напряжение не фиксируется. Читайте подробнее, также, про ремонт коленвала.
3. Датчик расхода воздуха в авто — на что влияет?
Принцип работы датчика расхода воздуха основан на измерении количества тепла, отданного потоку воздуха во впускном коллекторе двигателя. Нагревательный
элемент датчика установлен перед воздушным фильтром автомобиля. Изменение
скорости потока воздуха и, соответственно, его массовой доли, отражается на степени
изменения температуры нагревательной спирали MAF-сенсора.
«Троение» двигателя при работе и потеря мощности говорит о возможном выходе из строя датчика расхода воздуха.
4. Кислородный датчик, лямда-зонд — неисправность датчика
Кислородный датчик или лямда-зонд определяет количество кислорода в выпускном коллекторе, оставшегося после сгорания топлива. Лямда-зонд входит в электронную систему управления двигателем, которая регулирует количество топлива, обеспечивая его полноту сгорания. Повышенный расход топлива характеризует возможную неисправность датчика.
5. Датчик дроссельной заслонки — признаки неисправности
Этот датчик представляет собой электромеханическое устройство, состоящего из чувствительного элемента и шагового двигателя.
Чувствительным элементом является
температурный датчик, а шаговый двигатель является исполнительным механизмом.
Это электромеханическое устройство изменяет положение дроссельной заслонки
относительно температуры охлаждающей жидкости. Таким образом, частота вращения
коленчатого вала двигателя зависит от степени нагрева ОЖ.
Характерным признаком неисправности этого датчика является отсутствие прогревочных оборотов и повышенный расход топлива.
6. Датчик давления масла — функции, выход из строя
На автомобилях японской марки устанавливается датчик давления масла мембранного
типа. Датчик состоит из двух полостей, разделенных гибкой мембраной. Масло
воздействует на мембрану с одной стороны, прогибаясь от давления. В измерительной
полости датчика мембрана соединена со штоком реостата.
В зависимости от давления моторного масла, мембрана прогибается больше или меньше, изменяя при этом общее сопротивление сенсора. Датчик давления масла расположен на блоке цилиндров двигателя.
Горящая лампочка давления масла на панели автомобиля может свидетельствовать о выходе из строя датчика.
7. Не работает датчик детонации в двигателе?
Датчик детонации двигателя измеряет угол опережения зажигания. При нормальной работе двигателя датчик находится в «холостом» режиме. При изменении процесса
сгорания в сторону взрывного характера сгорания топлива-детонации, датчик посылает сигнал электронной системе управления двигателем для изменения угла опережения
зажигания в сторону уменьшения.
Он расположен в районе воздушного фильтра на блоке цилиндров. Для проверки работоспособности датчика детонации, необходимо выполнить диагностику двигателя.
8. Датчик угла поворота распредвала — троит двигатель
Этот датчик находится на головке блока цилиндров и измеряет частоту вращения
распределительного вала двигателя, и на основе сигналов от датчика, блок управления определяет текущее положение поршней в цилиндрах.
Неравномерность работы двигателя и троение свидетельствует о некорректной работе датчика. Проверку производят при помощи омметра, измеряя сопротивление между клеммами сенсора.
9. Датчик АБС / ABS в автомобиле — проверяем работоспособность
Датчики АБС электромагнитного типа устанавливаются на колесах автомобиля и входят в антиблокировочную систему автомобиля.
Функцией датчика является измерение частоты вращения колеса. Объектом измерения датчика является сигнальный зубчатый диск, который установлен на ступице колеса. При неисправном датчике АБС, контрольная лампочка на панели управления не гаснет после запуска двигателя.
Технология определения работоспособности датчика заключается в измерении сопротивления между контактами датчика, при неисправности сопротивление равняется нулю.
10. Датчик уровня топлива в авто — как проверить работоспособность?
Датчик уровня топлива устанавливается в корпус бензонасоса и состоит из нескольких компонентов. Поплавок посредством длинной штанги воздействует на секторный реостат, который изменяет сопротивление датчика в зависимости от уровня топлива в баке автомобиля. Сигналы датчика поступают на стрелочный или электронный указатель на панели управления автомобиля. Проверка работоспособности датчика уровня топлива осуществляется омметром, которым измеряется сопротивление между контактами датчика.
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.