Меню

Схемы для управления мощными двигателями

Транзисторное управление двигателями в схемах на микроконтроллере

Электрический двигатель — это машина, преобразующая электрическую энергию в механическую. Первые электродвигатели появились в середине 19 века. Успехи в их разработке связывают с именами таких выдающихся физиков и инженеров, как Н.Тесла, Б.Якоби, Г.Феррарис, В.Сименс.

Различают электро двигатели постоянного и переменного тока. Преимущество первых заключается в возможности экономичного и плавного регулирования частоты вращения вала. Преимущество вторых — большая удельная мощность на единицу веса. В микроконтроллерной практике часто применяют низковольтные двигатели постоянного тока, используемые в бытовых и компьютерных вентиляторах (Табл. 2.13). Встречаются также конструкции с сетевыми двигателями.

Таблица 2.13. Параметры вентиляторов фирмы Sunon

Обмотку двигателя следует рассматривать как катушку с большой индуктивностью, поэтому её можно коммутировать обычными транзисторными ключами (Рис. 2.78, а…т). Главное — это не забыть про защиту от ЭДС самоиндукции.

В двигателях постоянного тока имеется возможность изменять направление вращения ротора в зависимости от полярности рабочего напряжения. В таких случаях широко используют мостовые схемы «Н-bridge» (Рис. 2.79, а…и).

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи (начало):

а) регулирование скорости потока воздуха вентилятора M1. Конденсатор С/ уменьшает ВЧ- помехи. Диод VD1 защищает транзистор VT1 от выбросов напряжения. Резистор R1 определяет степень насыщения транзистора Г77, а резистор R2 закрывает его при рестарте MK. Частота импульсов ШИМ на выходе МК должна быть не менее 30 кГц, т.е. за пределами звукового диапазона, чтобы исключить неприятный «свист». Элементы С/ и R2 могут отсутствовать;

б) плавное регулирование частоты вращения вала двигателя M1 через канал ШИМ. Конденсатор С/ является первичным, а конденсатор С2— вторичным фильтром сигналов ШИМ; О

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

в) транзисторы VT1, VT2 соединяются параллельно для увеличения суммарного коллекторного тока. Резисторы R1, R2 обеспечивают равномерную нагрузку по мощности на оба транзистора, что связано с разбросом у них коэффициентов И2]Э и ВАХ переходов «база — эмиттер»;

г) двигатель M1 (фирма Airtronics) имеет «цифровой» вход управления, что позволяет подключать к нему MK напрямую. Транзисторные ключи (драйверы) находятся внутри двигателя;

д) два отдельных источника питания позволяют значительно снизить влияние на MK электрических помех, которые генерирует двигатель M1. Система будет работать устойчивее. GB1 — это маломощная литиевая батарея, GB2, GB3 — это пальчиковые гальванические элементы с общим напряжением 3.2 В и мощностью, достаточной для запуска и работы двигателя M1\

е) параллельные резисторы R2, R3 служат ограничителями тока, протекающего через двигатель M1. Кроме того, они стабилизируютток в нагрузке, если транзистор VT1 находится в активном режиме или на грани входа в режим насыщения;

ж) MK включает/выключает двигатель M1. Резистором R3 подстраивается частота оборотов его вала. Стабилизатором служит «магнитофонная» микросхема DA1 фирмы Panasonic. С её помощью на зажимах двигателя M1 поддерживаются постоянные параметры, которые практически не зависят от колебаний температуры и напряжения питания;

Читайте также:  Поменял сцепление машина не едет ваз

з) дроссели L7, L2 и конденсаторы C7, С2фильтруют излучаемые двигателем радиопомехи. С той же целью двигатель помещается в заземлённый экранированный корпус;

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

и) вибромотор M1 является источником мощных электромагнитных и радиочастотных помех. Элементы L/, L2, C1 служат фильтрами. Резистор R2 ограничивает пусковой ток через два приоткрытом транзисторе VT1 Диоды VD1, УА2срезаютвершиныимпульсныхпомех;

л) применение ключа на полевом транзисторе VT1 повышает КПД по сравнению с ключом на биполярном транзисторе, ввиду более низкого сопротивления «сток — исток». Резистор R1 ограничивает амплитуду наводок, которые могут «просачиваться» от работающего двигателя M1 во внутренние цепи MK через ёмкость «затвор — сток» транзистора VT1;

м) транзистор VT2 является мощным силовым ключом, который подаёт питание на двигатель ML а транзистор VT1 — демпфером, который быстро тормозит вращение вала после выключения. Резистор R1 снижает нагрузку на выход MK при заряде ёмкостей затворов полевых транзисторов VT1, VT2. Резистор Я2отключаетдвигатель M1 при рестарте MK;

н) ключ на транзисторах VT1, VT2 собран по схеме Дарлингтона и имеет большое усиление. Для регулирования скорости вращения вала двигателя M1 может применяться метод ШИМ или фазо-импульсное управление. Система не имеет обратной связи, поэтому при снижении скорости вращения из-за внешнего торможения будет уменьшаться рабочая мощность на валу;

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи

м) встраивание MK в уже существующий тракт регулирования скорости вращения вала двигателя Ml. В этот тракт входят все элементы схемы, кроме резистора R2. Резистором R4 выставляется «грубая» частота вращения. Точная подстройка осуществляется импульсами с выхода MK. Возможна организация обратной связи, когда МК следит за каким-либо параметром и динамично подстраивает скорость вращения в зависимости от напряжения питания или температуры;

о) скорость вращения вала двигателя M1 определяется скважностью импульсов в канале ШИМ, генерируемых с нижнего выхода MK. Основным коммутирующим ключом служит транзистор VT2.2, остальные транзисторные ключи участвуют в быстрой остановке двигателя M1 по сигналу ВЫСОКОГО уровня с верхнего выхода MK;

п) плавное регулирование частоты оборотов вала двигателя M1 производится резистором R8. ОУ ТШ служит стабилизатором напряжения с двойной обратной связью через элементы R1, R8, C2 и R9, R10, C1. Комбинацией уровней с трёх выходов MK (ЦАП) можно ступенчато изменять скорость вращения вала двигателя M1 (точный подбор резисторами R2…R4). Линии MK могут переводиться в режим входа без « pull-up» резистора для увеличения числа «ступенек» ЦАП;

Рис. 2.78. Схемы подключения электродвигателей через транзисторные ключи (окончание):

p) фазо-импульсное управление двигателем переменного тока M1. Чем большее время за период сетевого напряжения открыт транзистор VT1, тем быстрее вращается вал двигателя;

с) включение мощного двигателя переменного тока Ml производится через оптотиристор KS7, который обеспечивает гальваническую развязку от цепей MK;

т) аналогично Рис. 2.78, п, но с одним кольцом обратной связи через элементы C7, R6, R8. Резистор R4 регулирует частоту вращения вала двигателя Ml плавно, а MK — дискретно.

Читайте также:  Техническое устройство автомобиля зил 131

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (начало):

а) направление вращения вала двигателя Ml изменяется мостовой «механической» схемой на двух группах контактов реле KL1, K1.2. Частота переключения контактов реле должна быть низкой, чтобы быстро не выработался ресурс. Дроссели L7, L2 снижают коммутационные токи при переключении реле и, соответственно, уровень излучаемых электромагнитных помех;

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (продолжение):

б) при ВЫСОКОМ уровне на верхнем и НИЗКОМ уровне на нижнем выходе МК транзисторы К77…к ТЗ открываются, а транзисторы КГ4…КГ6закрываются,инаоборот. Когда полярность питания двигателя Ml изменяется на противоположную, то его ротор вращается в обратную сторону. Сигналы с двух выходов МК должны быть противофазными, но с небольшой паузой НИЗКОГО уровня между импульсами, чтобы закрыть оба плеча (устранение сквозных токов). Диоды VD1..VD4уменьшают выбросы напряжения, тем самым защищая транзисторы от пробоя;

в) аналогично Рис. 2.79, б, но с другими номиналами элементов, а также с аппаратной защитой от одновременного открывания транзисторов одного плеча при помощи диодов VD3, VD4. Диоды VD1, КД2повышают помехоустойчивость при большом расстоянии до MK. Конденсатор С/ снижает «искровые» импульсные радиопомехи, генерируемые двигателем Ml;

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (продолжение):

г) аналогично Рис. 2.79, б, но с отсутствием «запирающих» резисторов в базовых цепях транзисторов VT2, VT4. Расчётнато,чтообмоткадвигателяЛ//достаточнонизкоомная,следователо, при рестарте МК внешние помехи на «висящих в воздухе» базах транзисторов VT1 VT2, VT4, VT6 не смогут открыть их коллекторные переходы;

д) аналогично Рис. 2.79, б, но с максимальным упрощением схемы. Рекомендуется для устройств, выполняющих второстепенные функции. Напряжение питания +Еи должно соответствовать рабочему напряжению двигателя M1\

е) в отличие от предыдущих схем, транзисторы VT1…VT4 включаются по схеме с общим эмиттером и управляются ВЫСОКИМ/НИЗКИМ уровнем непосредственно с выходов MK. Двигатель M1 должен быть рассчитан на рабочее напряжение 3…3.5 В. Диоды VD1… VD4 уменьшают выбросы напряжения. Фильтр LL C1 снижает импульсные помехи по питанию от двигателя M1, которые могут приводить к сбоям в работе MK. Встречающиеся замены деталей: VT1 VT3- KT972; VT2, VT4- KT973; VD1…VD4- КД522Б, Rx = 3.3 кОм; R2 = 3.3 кОм;

ж) мостовая схема на четырёх управляющих транзисторах VT1 VT2, VT4, VT5 структуры р—п—р. Подстроечным резистором R4 регулируется напряжение на двигателе Ml, а значит, и частота оборотов сразу для двух направлений вращения ротора;

Рис. 2.79. Мостовые схемы подключения электродвигателей к MK (окончание):

з) мостовая схема для управления мощным двигателем Ml (24 В, 30 А). Смена полярности напряжения на двигателе производится противофазными уровнями на средних выходах MK, а скорость вращения — методом ШИМ на верхнем и нижнем выходах MK;

и) транзисторы VT2, VT5 подают питание на мостовую схему управления двигателем Ml. Их запараллеливание позволяет подключить к диоду VD1 ещё одну такую же схему.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Читайте также:  Аварийная работа агрегатов автомобиля

Схемы управления электродвигателями

Подписка на рассылку

Современное оборудование часто работает в автоматическом и полуавтоматическом режиме. Это позволяет исключить пресловутый человеческий фактор, увеличить объемы и темпы производимых операций, сделать производство более рентабельным. Одним из главных факторов надежной работы современного оборудования является безупречное выполнение включения электродвигателей, которое выполняется в заданной последовательности и с соблюдением штатного режима работы. Схемы управления электродвигателями могут быть различны, так как принципы автоматического и полуавтоматического режима работы могут существенно отличаться друг от друга.

Полуавтоматическое управление предусматривает участие оператора, который инициирует пуск оборудования нажатием соответственной кнопки или поворачивая рычаг. После этого функция персонала заключается лишь в контроле рабочего процесса. При автоматическом управлении первоначальный пуск оборудования осуществляют реле или датчики, после чего работы выполняется в соответствие с заданными программами. Такое программное устройство часто выполняется с помощью логических схем, вариантов которых может быть довольно много. В промышленности наиболее часто встречаются следующие схемы управления асинхронными электродвигателями:

• нереверсивного управления;
• реверсивного управления с двумя магнитными пускателями.

Основные схемы управления асинхронным электродвигателем

При использовании схемы управления электродвигателем с нереверсивным управлением после пуска происходит подключение к сети электромагнитной катушки. С ее сердечником соприкасается подвижный якорь и замыкает силовые контакты. В результате на двигатель подается трехфазное напряжение. Параллельно с силовыми контактами замыкаются блокировочные, что позволяет зашунтировать кнопку пуска и отпустить ее. Нажимая кнопку стоп, оператор тем самым разрывает цепь, от которой запитана электромагнитная катушка. Это освобождает якорь, который при падении размыкает силовые контакты, что приводит к остановке оборудования. В этой схеме управления защита от длительной перегрузки обеспечивается подключением к двум фазам тепловых реле.

Схема управления реверсивным электродвигателем имеет два магнитных пускателя. Один из них соединяет схему включения на прямое вращение, а второй – на обратное включение. Кнопками «вперед» и «назад» подключаются те электромагнитные катушки, которые отвечают за соответствующую операцию. Реверсивные пускатели состоят из двух нереверсивных пускателей, имеют механическую блокировку, исключающую одновременное включение. Остановка двигателя включена в общую цепь управления.

Схемы управления электродвигателями постоянного тока и синхронными двигателями

Схема управления электродвигателем постоянного тока может быть следующих видов:

• с нижним расположением ключа;
• с верхним расположением ключа;
• мостовая схема.

Все они базируются на принципах ШИМ и основных характеристиках двигателя. Наиболее экономичной схемой является с нижним расположением ключа, его верхнее расположение используют при повышенных требованиях к безопасности. Мостовая схема используется при реверсивном управлении двигателем.

Синхронные двигатели сложнее асинхронных, но они менее чувствительны к колебаниям напряжения и более устойчивы к перегрузкам. Это стало причиной их широкого распространения. Схема управления синхронным электродвигателем обычно включается в себя тиристорные возбудители, которые заменили электромашинные возбудители, долгое время являвшиеся уязвимым местом этого типа электромоторов.

Adblock
detector