Многоскоростные однофазные конденсаторные электродвигатели
Однофазные асинхронные двигатели выпускаются для работы без регулирования частоты вращения. В тех же случаях, когда необходимо изменять частоту вращения, чаще всего используются двигатели с изменением числа пар полюсов.
В целом, для изменения скорости однофазного двигателя можно применить 3 различных способа. Один состоит в том, что в статоре помещаются 2 полных комплекта обмоток, каждый для различного числа полюсов. Тогда согласно уравнению 2 различные скорости получаются при одной и той же частоте сети. Другие 2 способа состоят в изменении напряжения на зажимах двигателя или в изменении числа витков главной обмотки путем ответвлений от нее.
Способ, основанный на использовании 2 комплектов обмоток, применяется главным образом для двигателей с расщепленной фазой и двигателей с конденсаторным пуском. Способы, основанные на изменении напряжения или использовании обмотки с ответвлениями, применяются главным образом для конденсаторных двигателей с постоянно включенной емкостью.
В настоящее время для привода различных механизмов широкое распространение получили многоскоростные асинхронные конденсаторные электродвигатели (электродвигатели с одной постоянно включенной емкостью). Такой тип электродвигателей не требует дополнительных элементов, необходимых для включения в сеть, а также позволяет достаточно просто менять направление вращения вала. Для этого достаточно поменять в схеме местами концы главной или вспомогательной обмоток.
В конденсаторных двигателях применяются основные схемы включения обмоток, показанные на рис. 1. Наибольшее распространение получила так называемая параллельная схема соединения обмоток (рис. 1, а). Как видно из рисунка, обмотки статора включаются в сеть питания параллельно. Фазосдвигающая емкость С включается последовательно со вспомогательной обмоткой.
Величина емкости конденсатора выбирается из условий обеспечения требуемых характеристик электродвигателей. В основном в конденсаторных двигателях емкость выбирается такой, чтобы сдвиг фаз токов в главной и во вспомогательной обмотках в номинальном режиме был близок к 90°. В этом случае двигатель имеет наилучшие энергетические показатели в рабочей точке, но ухудшаются пусковые.
Рис. 1. Схемы соединения обмоток асинхронных двигателей
Изменение частоты вращения конденсаторных двигателей осуществляется, чаще всего за счет изменения числа пар полюсов. Для этого на статоре укладывается либо два комплекта обмоток с различным числом полюсов, либо один комплект, с переключением числа полюсов.
В тех же случаях, когда не требуется значительного диапазона регулирования частоты вращения, используется наиболее простой способ — изменение числа витков рабочей обмотки. В этом случае при неизменности напряжения сети изменяется величина магнитного потока электродвигателя и, следовательно, электромагнитный момент и частота врашения ротора.
Двухскоростные двигатели при обмотках с ответвлениями
Ранее было указано, что скорость однофазного двигателя может быть изменена или путем изменения напряжения на его зажимах, или путем изменения числа витков его вторичнной обмотки. Первый способ делает необходимым примение автотрансформатора и используется главным образом для конденсаторных двигателей с постоянно включенной емкостью, имеющих на валу вентилятор.
При автотрансформаторе можно получить и больше, чем 2 скорости. Изменение числа витков главной обмотки получается путем ответвлений от нее. Статор тогда имеет 3 обмотки: главную, промежуточную и вспомогательную. Первые 2 обмотки имеют одну и ту же магнитную ось, т. е. промежуточная обмотка наматывается в тех же пазах, что и главная обмотка (над ней).
Практическая реализация этого способа осуществляется следующим образом. В пазах статоре помимо проводников рабочей (РО) и конденсаторной обмоток (КО), укладываются проводники дополнительной обмотки (ДО). В результате комбинации различных схем включения обмоток (рис. 2) удастся получить при неизменной величине питающего напряжения различные механические характеристики электродвигателя.
Рис. 2. Схемы соединений статорных обмоток многоскоростного конденсаторного двигателя при минимальной (а), повышенной (б) и максимальной частоте вращения (в)
В процессе регулирования частоты вращения в многоскоростных конденсаторных электродвигателях возникают переходные процессы, связанные с изменением схем включения обмоток статора. Эти процессы протекают, как правило, при незатухающих магнитных полях и могут вызнать значительные броски токов и перенапряжения в обмотках двигателя и фазосмещающем конденсаторе.
Двухскоростные двигатели с 2 комплектами обмоток
Размещение 2 комплектов обмоток, т. е. 2 главных обмоток и 2 вспомогательных обмоток, требует значительного увеличения размеров. Для того чтобы уменьшить эти размеры, часто применяется соединение для вспомогательной или низкоскоростной обмотки, при котором число катушечных групп получается меньше числа полюсов.
На рис. 3 показана схема соединений обмоток для 4 и 6 полюсов (примерно 1435 а 950 об/мин при 50 гц). Внешняя обмотка — 4-полюсная главная обмотка. Следующая — 6-полюсная главная обмотка. Третья — 4-полюсная вспомогательная обмотка, имеющая только 2 катушечные группы. Внутренняя обмотка — 6-полюсная вспомогательная обмотка, имеющая также только 2 катушечные группы.
Рис. 3. Схема соединений для 2-скоростного (4 и 6 полюсов) двигателя.
На рис. 3 обе вспомогательные обмотки имеют уменьшенное число катушечных групп. Можно также и главную обмотку сделать такого же типа.
Рассмотрим 2 примера. Статорная обмотка для 4 и 8 полюсов может иметь нормальную 4-полюсную главную обмотку и 3 другие обмотки с уменьшенным числом катушечных групп, т. е. 8-полюсную главную обмотку с 4 катушечными группами, 4-полюсную вспомогательную обмотку с 2 катушечными группами и 8-полюсную вспомогательную обмотку с 4 катушечными группами.
Статорная обмотка для 6 и 8 полюсов может иметь нормальную 6-полюсную главную обмотку, две 8-полюсные обмотки с уменьшенным числом групп, т. е. 8-полюсную главную обмотку и 8-полюсную вспомогательную обмотку с 4 полюсными группами каждая, а 6-полюсную вспомогательную обмотку с 2 катушечными группами. 6-полюсная вспомогательная обмотка может быть также выполнена в виде нормальной обмотки, т. е. с 6 катушечными группами.
На рис. 4 показана схема 2-скоростного двигателя с расщепленной фазой с 2 обмотками и здесь же показано присоединение его к сети. Соединения выполнены таким образом, что требуется только 1 пусковой выключатель. Этот пусковой выключатель должен выключаться при 75 — 80% синхронной скорости низкоскоростной обмотки.
Рис. 4. Схема двухскоростного двигателя с расщепленной фазой
Если схема, показанная на рис. 4, применяется для двигателя с конденсаторным пуском, то используется или 1 конденсатор, соединенный последовательно с пусковым выключателем, или 2 конденсатора, 1 из которых соединяется последовательно с выводом П2, а другой — с выводом П21.
Если двигатель всегда можно пускать при соединении, соответствующем одной и той же скорости, то одна из вспомогательных обмоток может быть исключена. Пуск в этом случае частично или полностью автоматизируется.
Многоскоростные асинхронные однофазные электродвигатели ДАСМ
Для достижения больших частот вращения в бытовой технике часто необходимы электродвигатели с большим соотношением скоростей вращения ротора. Для этих целей применяются однофазные конденсаторные асинхронные двигатели с числами полюсов 2/12; 2/14; 2/16; 2/18; 2/24 и даже выше.
Однако изготовление двигателей с большим соотношением полюсов технологически сложно, поэтому пользуются разного рода механическими преобразователями частоты вращения, а также полупроводниковыми преобразователями частоты питающего напряжения.
Наиболее просто частота вращения в небольших пределах у этих двигателей регулируется изменением напряжения питания, для этого последовательно с обмоткой включаются дополнительные резисторы или дроссели.
Еще в СССР для привода бытовых автоматических стиральных машин был разработан двухскоростные конденсаторные электродвигатели типа ДАСМ-2 и ДАСМ-4 с числом полюсов 16/2.
Двигатель ДАСМ-2 был разработан для привода, автоматических стиральных машин емкостью 4 — 5 кг сухого белья. Первоначально он был рассчитан на номинальные мощности 75/400 Вт при частотах вращения 390/2750 об/мин.
Рис. 5. Двухскоростной конденсаторный асинхронный электродвигатель типа ДАСМ-2
На рис. 5 показаны схемы включения двигателей ДАСМ-2 и ДАСМ-4 в питающую сеть. Как видно из рисунка, двигатель ДАСМ-2 имеет на статоре четыре обмотки. Главная и вспомогательная обмотки соединены по параллельной схеме включения.
Двигатель ДАСМ-4 на низкой частоте вращения выполнен с трехфазной схемой включения в звезду, а на высокой частоте вращения — с параллельным включением обмоток статора. На статоре двигателя укреплено температурное реле РК-1-00 для защиты обмоток при перегрузках и в режимах короткого замыкания. Нормально замкнутые контакты реле включены в общий вывод статора электродвигателя.
Рис. 5. Схемы подключения двухскоростных электродвигателей к сети питания: а — электродвигателя ДАСМ-2; б — электродвигателя ДАСМ-4. Г.О. — главная обмотка; В.О, — вспомогательная обмотка; 1 — общий вывод обмоток малой и большой частоты вращения; 2 — конец вспомогательной обмотки большой частоты вращения; 3 — начало главной обмотки большой частоты вращения; 4 — начало вспомогательной обмотки низкой частоты вращения; 5 — начало главной обмотки низкой частоты вращения; Ср — рабочий конденсатор; Сп — пусковой конденсатор; РТ — реле тепловое защитное типа РК-1-00; РП — реле пусковое типа РТК-1-11; Р1, Р2 — контакты командоаппарата.
Схемы включения асинхронных электродвигателей. Включение трехфазного электродвигателя в однофазную сеть. Определение фаз.
Схемы присоединения асинхронных электродвигателей к сети
Схемы присоединения односкоростных асинхронных электродвигателей с короткозамкнутым ротором
Асинхронные электродвигатели с короткозамкнутым ротором до 11 кВт включительно имеют три выводных конца во вводном устройстве и зажим заземления. Обмотки этих двигателей соединены в звезду или треугольник и предназначены для включения на одно из стандартных напряжений.
Двигатели мощностью от 15 до 400 кВт имеют шесть выводных концов во вводном устройстве и зажим заземления. Эти двигатели могут включаться на напряжения 220/380 или 380/660 В. Схемы включения обмоток показаны на рис. 11.
Рис. 11. Схемы включения односкоростного двигателя на напряжения 220/380 или 380/660 В: а — звезда (высшее напряжение); б — треугольник (низшее напряжение)
Схемы присоединения многоскоростных асинхронных электродвигателей с короткозамкнутым ротором
Многоскоростные асинхронные электродвигатели отличаются от односкоростных только обмотками статора и пазами ротора. Число частот вращения может быть две, три или четыре. Например, в серии 4А предусмотрены многоскоростные двигатели со следующими соотношениями частот вращения: 3000/1500, 1500/1000, 1500/750, 0/500, 0/750, 3000/1500/1000, 3000/1500/750,
1500/1000/750, 3000/1500/1000/750, 1500/1000/750/500 об/мин.
Схемы соединений обмоток двухскоростных двигателей показаны на рис. 12 и 13, схемы присоединения четырехскоростных двигателей — на рис. 14.
Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1:2 выполняется по схеме Даландера и соединяется:
— в треугольник () при низшей частоте вращения;
— в двойную звезду () при высшей частоте вращения.
Рис. 12. Схемы соединений обмоток двухскоростных двигателей: а — /
. Низшая скорость —
: 1В, 2В, 3В — свободны, на 1Н, 2Н, 3Н подается напряжение. Высшая скорость —
. 1Н, 2Н, 3Н — замкнуты между собой, на 1В, 2В, 3В подается напряжение; б —
/
с дополнительной обмоткой. Низшая скорость —
с дополнительной обмоткой, 1B, 2B, 3В — замкнуты между собой: на 1Н, 2Н, 3Н подается напряжение. Высшая скорость —
: Ш, 2Н, 3Н — свободны, на 1B, 2B, 3В подается напряжение; в —
. Низшая скорость: 1В, 2В, 3В — свободны, на 1Н, 2Н, 3Н подается напряжение. Высшая скорость: 1Н, 2Н, 3Н — свободны, на 1B, 2B, 3В подается напряжение.
Рис. 13. Схема присоединений двухскоростных двигателей с соотношением скоростей 2:3 и 3:4: а — /
без дополнительной обмотки; б —
/
с дополнительной обмоткой; в —
Рис. 14. Схема присоединений четырехскоростных двигателей
Обмотки двухскоростных двигателей с соотношением частот вращения 2:3 и 3:4 соединяются:
— либо в тройную звезду;
— либо в треугольник — двойную звезду без дополнительной обмотки или с дополнительной обмоткой.
Трехскоростные двигатели имеют две независимые обмотки, одна из которых выполняется по схеме Даландера и соединяется по схеме /
. Число выводных концов трехскоростного двигателя — девять.
Четырехскоростные двигатели имеют две полюсопереключаемые независимые обмотки, выполненные по схеме Даландера, с 12 выводными концами. При включении в сеть одной из обмоток вторая обмотка остается свободной.
Определение начала и концы фаз обмотки асинхронного двигателя
Напряжения сети и схемы статорных обмоток электродвигателя
Если в паспорте электродвигателя указано, например, 220/380 В, это означает, что электродвигатель может быть включен:
— в сеть 220 В (схема соединения обмоток — треугольник);
— в сеть 380 В (схема соединения обмоток — звезда).
Статорные обмотки асинхронного электродвигателя имеют шесть концов.
По ГОСТу обмотки асинхронного двигателя (рис. 15) имеют следующие обозначения:
— I фаза — С1 (начало), С4 (конец);
— II фаза — С2 (начало), С5 (конец);
— III фаза — С3 (начало), С6 (конец).
Если в сети напряжения равно 380 В, то обмотки статора двигателя должны быть соединены по схеме «звезда». В общую точку собраны или все начала (С1, С2, С3), или все концы (С4, С5, С6). Напряжение 380 В приложено между концами обмоток АВ, ВС, СА. На каждой фазе, то есть между точками 0 и А, 0 и В, 0 и С, напряжение будет в раз меньше: 380/ =220 В.
а — в звезду; б — в треугольник; в — исполнение схем «звезда» и «треугольник» на доске зажимов
» >
Рис. 15. Схема подключения обмоток асинхронного двигателя: а — в звезду; б — в треугольник; в — исполнение схем «звезда» и «треугольник» на доске зажимов
Если в сети напряжение 220 В (при системе напряжений 220/127 В, что в настоящее время, не встречается) обмотки статора двигателя должны быть соединены по схеме «треугольник».
В точках А, В и С соединяются начало (Н) предыдущей с концом (К) последующей обмотки и с фазой сети (рис. 15, б). Если предположить, что между точками А и В включена I фаза, между точками В и С — II, а между точками С и А — III фаза, то при схеме «треугольник» соединены: начало I (С1) с концом III (С6), начало II (С2) с концом I (С4) и начало III (С3) с концом II (С5).
У некоторых двигателей концы фаз обмотки выведены на доску зажимов. По ГОСТу, начала и концы обмоток выводят в том порядке, как эго показано на рис. 15, в.
Если теперь необходимо соединить обмотки двигателя по схеме
«звезда», зажимы, на которые выведены концы (или начала), замыкают между собой, а к зажимам двигателя, на которые выведены начала (или концы), присоединяют фазы сети.
При соединении обмоток двигателя в «треугольник» соединяют зажимы по вертикали попарно и к перемычкам присоединяют фазы сети. Вертикальные перемычки соединяют начало I с концом III фазы, начало II с концом I фазы и начало III с концом II фазы.
Определение согласованных выводов (начал и концов) фаз статорной обмотки
Рис. 16. Определение фазных обмоток при помощи контрольной лампы
На выводах статорных обмоток двигателя обычно имеются стандартные обозначения на металлических обжимающих кольцах. Однако эти обжимающие кольца теряются и возникает необходимость определить согласованные выводы. Это выполняют в такой последовательности.
Сначала при помощи контрольной лампы определяют пары выводов, принадлежащих отдельным фазным обмоткам (рис. 16).
К зажиму сети 2 подключают один из шести выводов статорной обмотки двигателя, а к другому зажиму сети 3 подключают один конец контрольной лампы. Другим концом контрольной лампы поочередно касаются каждого из остальных пяти выводов статорных обмоток до тех пор, пока лампа не загорится.
Примечание. Если лампа загорелась, значит, два вывода, присоединенные к сети, принадлежат одной фазе. Необходимо следить при этом, чтобы выводы обмоток не замыкались друг с другом.
Каждую пару выводов помечают (например, завязав ее узелком).
Определив фазы статорной обмотки, приступают ко второй части работы — определению согласованных выводов или «начал» и «концов». Эта часть работы может быть выполнена двумя способами.
1. Способ трансформации. В одну из фаз включают контрольную лампу. Две другие фазы соединяют последовательно и включают в сеть на фазное напряжение.
Если эти две фазы оказались включенными так, что и точке 0 условный «конец» одной фазы соединен с условным «началом» другой (рис. 17, а), то магнитный ноток ∑Ф пересекает третью обмотку и индуктирует в ней ЭДС.
Лампа укажет наличие ЭДС небольшим накалом. Если накал незаметен, то следует применить в качестве индикатора вольтметр со шкалой до 30–60 В.
Рис. 17. Определение начал и концов в фазных обмотках двигателя методом трансформации: а — две фазы оказались включенными так, что и точке 0 условный «конец» одной фазы соединен с условным «началом» другой; б — в точке 0 встретились условные «концы» обмоток; в — схема для определения согласованных выводов третьей обмотки
Если в точке 0 встретятся, например, условные «концы» обмоток (рис. 17, б), то магнитные потоки обмоток будут направлены противоположно друг другу. Суммарный поток будет близок к нулю, и лампа не даст накала (вольтметр покажет 0). В данном случае выводы, принадлежащие какой-либо из фаз, следует поменять местами и включить снова. Если накал у лампы есть (или вольтметр показывает некоторое напряжение), то концы следует пометить. На одни из выводов, которые встретились в общей точке 0, надевают бирку с пометкой Н1 (начало I фазы), а на другой вывод — К3 (или К2).
Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно.
Для определения согласованных выводов третьей обмотки собирают схему, представленную на рис. 17, в. Лампу включают в одну из фаз с уже обозначенными выводами.
2. Способ подбора фаз. Этот способ определения согласованных выводов (начал и концов) фаз статорной обмотки можно использовать для двигателей небольшой мощности — до 3–5 кВт (рис. 18).
После того как определены выводы отдельных фаз, их наугад соединяют в звезду (по одному выводу от фазы подключают к сети, а по одному — соединяют в общую точку) и включают двигатель в сеть. Если в общую точку попали все условные «начала» или все «концы», то двигатель будет работать нормально.
Но если одна из фаз (III) оказалась «перевернутой» (рис. 18, а), то двигатель сильно гудит, хотя и может вращаться (но легко может быть заторможен). В этом случае выводы любой из обмоток наугад (например, I) следует поменять местами (рис. 18, б).
Если двигатель опять гудит и плохо работает, то фазу следует снова включить, как прежде (как в схеме а), но повернуть другую фазу — III (рис. 18, в).
Рис. 18. Определение «начал» и «концов» обмотки методом подбора схемы «звезда»: а — шаг первый; б — шаг второй; в — шаг третий
Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.
Когда двигатель станет работать нормально (рис. 18, в), все три вывода, которые соединены в общую точку, следует пометить одинаково, например, «концами», а противоположные — «началами». После этого можно собирать рабочую схему, указанную в паспорте двигателя.
Включение трехфазного электродвигателя в однофазную сеть без перемотки
Трехфазный асинхронный двигатель может работать от однофазной сети:
— как однофазный с пусковым элементом;
— как однофазный конденсаторный с постоянно включенной рабочей емкостью.
Применение двигателя в качестве конденсаторного предпочтительнее. Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами показаны на рис. 19, с шестью выводами на рис. 20.
Рис. 19. Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами: а — схема с пусковым сопротивлением; б, в — схемы с рабочей емкостью
Рис. 20. Схемы включения в однофазную сеть трехфазных двигателей с шестью выводами: а — схема с пусковым сопротивлением; б, в — схемы с рабочей емкостью
Если принять за % мощность трехфазного двигателя, обозначенную на его щитке, то:
— при однофазном включении двигатель может развить 50–70 % этой мощности;
— при использовании в качестве конденсаторного двигатель может развить 70–85 % и более.
Примечание. Существенное преимущество конденсаторного двигателя заключается в том, что отсутствует специальное пусковое устройство, которое необходимо при однофазной схеме для отключения пусковой обмотки после разгона двигателя.
Схему включения на рис. 19 и рис. 20 надо выбирать с учетом напряжения сети и номинального напряжения двигателя. Например, при трех выведенных концах обмотки статора (рис. 19) двигатель может быть использован в сети, напряжение которой равно номинальному напряжению двигателя.
При шести выводных концах обмотки двигатель имеет два номинальных напряжения: 127/220 В, 220/380 В.
Если напряжение сети равно большему номинальному напряжению двигателя, т. е. Uc = 220 В при номинальном напряжении 127/220 В или Uс = 380 В при номинальном напряжении 220/380 В и т. д., то надо пользоваться схемами, приведенными на рис. 19, а, б.
При напряжении сети равно меньшему номинальному напряжению двигателя, следует применять схему, показанную на рис. 19, в.
Совет. В этом случае при однофазном включении значительно уменьшается мощность двигателя, поэтому целесообразно применять схемы с рабочей емкостью.
Рабочая емкость Ср (мкФ) для каждой схемы должна иметь определенное значение и может быть подсчитана, исходя из напряжения однофазной сети Uc и номинального тока Iф в фазе трехфазного двигателя:
где k — коэффициент, зависящий от схемы включения.
При частоте 50 Гц можно принять для схем:
— по рис. 19, б и рис. 20, б — k = 2800;
— по рис. 19, в — k = 4800;
— по рис. 20, в — k = 1600.
Напряжение на конденсаторе Uk также зависит от схемы включения и напряжения сети для схем:
Примечание. Номинальное напряжение конденсатора должно быть равно или несколько больше расчетного значения.
Внимание. Необходимо помнить, что конденсаторы после отключения длительное время сохраняют напряжение на своих зажимах и создают при прикосновении к ним опасность поражения человека электрическим током. Опасность поражения тем выше, чем больше емкость и выше напряжение на включенном в схему конденсаторе. Поэтому параллельно конденсатору следует установить резистор сопротивлением порядка –510 кОм, для того, чтобы конденсатор смог быстро разрядиться.
При ремонте или отладке двигателя необходимо после каждого отключения конденсатор разрядить. Для защиты от случайного прикосновения в процессе эксплуатации двигателя конденсаторы должны быть жестко закреплены и ограждены.
Пусковое сопротивление Rп определяют опытным путем, используя регулируемое сопротивление (реостат).
Если необходимо получить увеличенный момент при пуске двигателя, то параллельно рабочему конденсатору включают пусковой. Его емкость подсчитывают по формуле:
где Ср — емкость рабочего конденсатора.
Пусковой момент при этом получается близким к номинальному моменту трехфазного двигателя.
Измерение параметров трехфазного асинхронного двигателя при условиях,
отличных от номинальных
Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается,
коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.
При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.
При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.
При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.
Предупреждение повреждения изоляции обмотки статора асинхронного электродвигателя
Причины повреждения обмоток статора асинхронных электродвигателей
Большинство аварий электрических машин связано с повреждением обмотки статора.
Примечание. Высокая повреждаемость обмотки объясняется тяжелыми условиями работы и недостаточной стабильностью электрических свойств изоляционных материалов.
В результате повреждения изоляции может произойти замыкание между:
— обмоткой и магнитопроводом;
— витками катушек или между фазными обмотками.
Основной причиной повреждения изоляции является резкое снижение электрической прочности под влиянием:
— загрязнения поверхности обмотки;
— попадания в электродвигатель металлической стружки токопроводящей пыли;
— наличия в охлаждающем воздухе паров различных жидкостей;
— продолжительной работы электродвигателя при повышенной температуре обмотки;
— естественного старения изоляции.
Увлажнение обмотки может произойти вследствие продолжительного хранения или эксплуатации электродвигателя в сыром неотапливаемом помещении. В установленном электродвигателе увлажнение может произойти при длительном неподвижном состоянии, особенно при повышенной влажности окружающего воздуха или при попадании воды непосредственно в электродвигатель.
Совет. Для предупреждения увлажнения обмотки во время хранения электродвигателя необходимы хорошая вентиляция складского помещения и умеренное отапливание в холодное время года. В периоды длительных остановок электродвигателя при сырой и туманной погоде следует закрывать задвижки воздушных каналов поступающего и выходящего воздуха. При теплой сухой погоде все задвижки должны быть открыты.
Во избежание образования водяной бани недопустимо хранение электродвигателей, укрытых брезентом и другими водонепроницаемыми материалами. Такое хранение допускается в случае установки дистанционирующих прокладок между корпусом электродвигателя и тентом. Необходима также регулярная вентиляция воздушного зазора и осушение воздуха помещений.
Загрязнение обмотки электродвигателя происходит, главным образом, вследствие использования для охлаждения недостаточно чистого воздуха. Вместе с охлаждающим воздухом в электродвигатель могут попадать угольная и металлическая пыль, сажа, пары и капли различных жидкостей. Вследствие износа щеток и контактных колец образуется проводящая пыль, которая при встроенных контактных кольцах оседает на обмотках электродвигателя.
Предотвращение загрязнения может быть достигнуто внимательным уходом за электродвигателем и тщательной очисткой охлаждающего воздуха. Необходимо:
— периодически осматривать электродвигатель;
— очищать его от пыли и грязи;
— в случае необходимости производить мелкий ремонт изоляции.
При повышенном нагревании, а также в результате естественного старения изоляция в значительной мере утрачивает механическую прочность, становится хрупкой и гигроскопичной.
При длительной работе машины крепления пазовых и лобовых частей обмотки ослабляются и вследствие вибрации их изоляция разрушается. Изоляция обмотки может быть повреждена:
— из-за небрежной сборки и транспортировки электродвигателя;
— вследствие разрыва вентилятора или бандажа ротора;
— в результате задевания ротора за статор.
Сопротивление изоляции обмотки статора асинхронных электродвигателей
О состоянии изоляции можно судить по ее сопротивлению. Минимальное сопротивление изоляции зависит: от напряжения U, В; электродвигателя и его мощности Р, кВт.
Сопротивление изоляции обмоток от магнитопровода и между разомкнутыми фазными обмотками при рабочей температуре электродвигателя должно быть не менее 0,5 МОм.
Совет. При температуре ниже рабочей это сопротивление необходимо удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, для которой оно определяется.