Меню

Схема машины 3 поколения

ГБО 3 поколения, комплектация, принцип работы, плюсы и минусы

Стремительное внедрение и развитие бензиновых инжекторных систем в двигателях внутреннего сгорания, новые требования и технологии не оставили производителей и инженеров проектировщиков газобаллонного оборудования в стороне. Было решено в хорошо отлаженную систему ГБО 2 внести часть изменений для обеспечения возможности «обратной» связи с двигателем, доверив часть управления электронному мозгу. Так появилось на свет ГБО 3 поколения. Хотя по европейской классификации это газобаллонное оборудование осталось вторым поколением.

Описание и комплектация

ГБО 3 рассчитано для перевод на газовое топливо как автомобилей оснащенных карбюратором так и инжекторных бензиновых двигателей.

Новинкой комплектующих ГБО 3 стали:

  • электронный дозатор с шаговым электродвигателем (в отличие от обычного дозатора с регулировочным болтом/болтами),

Электронный дозатор

  • и сам электронный блок управления этим дозатором.

Карбюраторный двигатель

Комплект ГБО 3 поколения для двигателя оснащенного карбюратором установить можно, но есть некоторые трудности. Например, нужно врезать лямбда зонд от инжекторной машины, для того чтобы контролировать качество приготовленной смеси по выхлопным газам двигателя внутреннего сгорания. Еще одна сложность — отследить полный «выпал» бензинового топлива из поплавковой камеры карбюратора, а потом перейти на электронное управление количественной подачей газового топлива.

В целом состав комплекта ГБО 3 принимает следующий вид:

  • газовый баллон;
  • заправочный клапан;
  • мультиклапан;
  • датчик положения дроссельной заслонки;
  • заправочная и расходная магистраль;
  • фильтр грубой очистки (зачастую встроен в редуктор-испаритель);
  • редуктор-испаритель (электронный);
  • кнопка переключения с индикацией работы «ГАЗ» или «Бензин»с проводкой;
  • дозатор оснащенный электронным шаговым двигателем.
  • смеситель (для смешивания пропан-бутановой смеси с воздухом);
  • бензинового электро клапана (который перекрывает подачу бензина в карбюратор при работе двигателя на газе).

Инжектор

Комплект ГБО 3 поколения на инжектор схож с ГБО 2, за исключением нескольких изменений. Теперь электронный блок управления дозатором газа берет значение по качественному составу смеси из лямбда зонда.

Количественную характеристику берет из датчика положения дроссельной заслонки и по этим показателям контролирует подачу газовой смеси в смеситель с помощью золотника, который передвигается шаговым двигателем.

Принцип работы

Принцип работы ГБО 3 поколения схож на принцип работы ГБО 2.

Сжиженная пропан-бутановая смесь, находящаяся в баллоне под давлением, через мультиклапан и расходную магистраль, подается к газовому электроклапану.

Далее, при прогреве двигателя до температуры записанной в электронный мозг, и/или достижении определенных оборотов в минуту, закрывает подачу сигнала к бензиновым форсункам, эмулируя их работу.

Электронный блок управления altis

Одновременно с этим газовый электроклапан открывается и сжиженная газовая смесь поступает в редуктор-испаритель, далее, шаговый двигатель приподнимает золотник дозатора и газовая смесь поступает в смеситель и мотор.

Любое изменение работы двигателя приводит к изменению качественной и количественной характеристики смеси. С помощью лямбда зонда врезанного в выхлопную систему контролируется качественный показатель.

Датчик кислорода

А с помощью датчика положения дроссельной заслонки — количественный, эти показатели передаются на электронный блок управления.

Датчик положения дроссельной заслонки

Далее «электроника», с помощью золотника, регулирует заданное соотношение газовая/воздушная смесь и дозирует ее.

Отличие от ГБО 2 проявляется в том, что электроника блока контролирует подачу газа, и ее отключение. Задача электронного блока — создать оптимальную концентрацию газо-воздушной смеси для разных режимов работы двигателя.

Это позволяет водителю меньше внимания уделять манипуляциям по переходу на газовое топливо. В технической части обеспечивается большая долговечность службы двигателя внутреннего сгорания за счет отсутствия обедненной смеси, которая наносит вред паре седло клапана — клапан. Также это способствует уменьшению количества вредных выбросов в атмосферу при работе двигателя.

Читайте также:  Где находится щуп масла двигателя рено симбол

Для аварийного запуска автомобиля на газу необходимо нажать и удерживать некоторое время кнопку переключения вида топлива (порядка 4-6 с), после чего завести автомобиль.

Кнопа ГБО 3/4

Преимущества и недостатки

К достоинствам ГБО 3 поколения нужно отнести:

Возможность использования как на инжекторных, так и в двигателях оснащенных карбюратором (с некоторыми доработками).

  1. Сохранение простоты конструкции.
  2. Возможность простого монтажа и установки.
  3. Простота и доступность регулировки механической и электрической части

Но появились и недостатки, фактически «похоронившие» ГБО 3 поколения:

Главный и очень существенный из них — очень медленная реакция на обратную связь с двигателем. Это приводит к неэффективной работе двигателя в переходных его режимах работы.

Дальнейшее развитие и внедрение электроники, новых схем и подходов обеспечило появление нового поколения — ГБО 4.

Газовое оборудование 3-го поколения на авто (устройство, настройка)

Последнее обновление — 2 апреля 2020 в 13:53

По причине появления более сложных моторов на автомобилях, с точными топливными системами, а также ввиду несовершенства первых вариаций газобаллонного оборудования, возникла необходимость в разработке ГБО 3 поколения.

Устройство и принцип работы системы

Газовое оборудование 3 поколения включает такие же базовые комплектующие, что и его предшественники:

  • заправочный клапан;
  • газовый баллон с мультиклапаном;
  • заправочную и расходную магистрали;
  • редуктор-испаритель (с датчиком температуры);
  • кнопка переключения с одного топлива на другое;
  • электромагнитный газовый клапан с встроенным фильтром грубой очистки.

Основным отличием является наличие:

  • распределителя газовой смеси (дозатор) с шаговым мотором и электроклапаном;
  • микропроцессора или электронного блок управления (ЭБУ);
  • механических форсунок (клапанов нулевого давления);

Принципиальная схема подключения ГБО 3 поколения на инжектор

Независимо от положения клавиши оборудования, пуск и прогрев ДВС производится на бензине. По достижении температуры охлаждающей жидкости мотора значений 20-30°C, система автоматически переходит на газ, при условии, если кнопка ГБО находится в соответствующей позиции.

Под управлением ЭБУ оборудования, отключаются бензиновые форсунки, и газовый клапан пропускает смесь, в сжиженном виде фильтруя ее, к редуктору испарителю. Топливо, проходя через 1 и 2 ступень редуктора, переходит в газообразное состояние с понижением давления, которое на выходе составляет 0,9-0,95 атмосфер.

Далее газ поступает на распределитель с шаговым моторчиком, который дозирует топливную смесь в определённом объёме к каждому цилиндру двигателя через клапаны-инжекторы (форсунки). Контроль, а также регулировка подачи происходит с помощью электронного микропроцессора ГБО, который принимает сигналы от:

  1. датчика положения дроссельной заслонки;
  2. МАР сенсора (давление во впускном тракте);
  3. датчика оборотов ДВС;
  4. лямбда-зонда;
  5. датчик температуры охлаждающей жидкости в испарителе.

В результате более точно распределяется количество газа, необходимое для оптимальной работы мотора в определенных условиях (разных режимах).

При запуске на газу роль подсоса играет электроклапан дозатора (клапан «сухого газа»), также он позволяет мягче перейти с бензина на газ и полностью перекрывает подачу топлива при остановке ДВС.

Форсунки врезаются во всасывающий коллектор мотора индивидуально к каждому цилиндру, максимально близко к впускным клапанам. Для минимизации риска взрыва («хлопка») топливовоздушной смеси.

Преимущества и недостатки оборудования

К достоинствам можно отнести:

  • сравнительно не сложный монтаж и регулировка оборудования;
  • снижение расхода газового топлива;
  • отсутствие хлопков во впускном коллекторе;
  • понижение токсичности выхлопа;
  • минимизация потери мощности двигателя авто;
  • надёжность системы (при должном обслуживании и качестве газа).
  • замедленная реакция распределителя топлива на изменения режимов работы мотора (низкая скорость корректировки топливной смеси);
  • дороговизна и отсутствие основных компонентов (редуктор стоит около 10 тыс. рублей, цена на шаговый моторчик 6 тыс. руб.);
  • применение на автомобилях не выше нормы Евро-2;
  • низкая ремонтопригодность.

Появление норм Евро-3 привело к сокращению использования ГБО третьего поколения. Система является переходной между 2 и более усовершенствованным 4 поколением.

Разница ГБО 3 и 4 поколения существенна. В четвёртом поколении газовая смесь находится в редукторе с постоянным давлением и впрыскивается при помощи электронных форсунок. Отсутствие распределителя, механических инжекторов, а также тонкая настройка блока управления, делает работу такого оборудования эффективнее.

Монтаж газобаллонного оборудования 3 поколения

Установка ГБО 3 поколения на инжектор осуществляется аналогично схеме других систем. Последовательность следующая:

  1. ставиться газовый баллон с мультиклапаном в выбранное место;
  2. заправочное устройство;
  3. магистрали;
  4. редуктор;
  5. газовый клапан;
  6. распределитель-дозатор;
  7. кнопка ГБО;
  8. ЭБУ;
  9. делается врезка форсунок;
  10. прокладывается и соединяется с датчиками жгут проводов.

Поставить ГБО 3 поколения на карбюраторный двигатель также возможно, но для его корректной работы потребуется установка лямбда регулирование топливной смеси, датчик разряжения, положения дросселя, частоты вращения коленчатого вала, а также бензинового клапана.

Такое решение будет не совсем целесообразно. На машины с карбюраторными двигателями всё же рекомендуется монтаж простого и дешёвого газового оборудования первого или второго типа.

Настройка топливной системы

Правильная регулировка ГБО 3 поколения осуществляется настройкой давления газа в редукторе-испарителе, её можно сделать своими руками, при наличии определённых навыков и оборудования. Калибровка ЭБУ не требуется (контроллер не использует штатных топливных карт).

После проверки работоспособности штатной бензиновой системы и устранения утечек газа, для регулировки давления в ступенях редуктора, потребуется специальный дифференциальный манометр.

Схема подключения манометра

1-ая ступень:

Подключив манометр к отверстию на редукторе (вынуть заглушку) и шлангу от впускного коллектора, завести ДВС. После прогрева мотора на холостых оборотах, отрегулировать давление с помощью винта на задней крышке испарителя (1,4 атм.). Отсоединить прибор, вставить заглушку, проверить утечку.

2-ая ступень:

Соединить манометр с коллектором (как в первом варианте), а второй его шланг с распределителем (сняв крышку на дне). Затем провести регулировку винтом на передней крышке редуктора (0,95 атм). Отключить прибор и проверить работоспособность системы.

Заключение

Такие недостатки в работе предыдущих установок, как хлопки во впускном тракте и невозможность автоматической регулировки качества/количества подаваемой газовой смеси в камеры сгорания инжекторного ДВС, на разных режимах его работы, побудило производителей автомобильного газового оборудования на создание новой системы.

Например, европейская компания KOLTEC-NECAM 90-х годах широко применяла свою разработку под названием EGI (Electronic Gas Injection), что в переводе означает электронный газовый впрыск. Машины с такими установками редко, но встречаются, по сей день.

Третье поколение ЭВМ: история развития

Третье поколение ЭВМ — история создания

Третье поколение электронных вычислительных машин датируется 1965–1975 гг. Элементной базой компьютеров данного периода стали интегральные схемы.

Интегральная схема – это электронная схема, смонтированная на крошечной пластине из полупроводникового материала. На микросхеме площадью меньше 1 см 2 располагались сотни элементов.

Вместе с серийным выпуском интегральных схем в 1961 году американская компания «Texas Instruments» разработала тестовую модель ЭВМ на микросхемах. Характеристики экспериментального устройства были следующими:

  • производительность – 15 команд;
  • одноадресность;
  • тактовая частота в 100 КГц;
  • объем памяти – 30 чисел;
  • потребляемая мощность – 16 Вт;
  • вес компьютера – 585 г;
  • площадь – 100 см 2 .

В 1964 году американская фирма IBM одной из первых начала производство серии ЭВМ «System – 360» на интегральных схемах. Модели этого семейства были ориентированы на выполнение экономических расчетов и решение логических задач. Компьютеры серии отличались друг от друга объемом оперативных запоминающих устройств и количеством выполняемых операций. Архитектура «System – 360» была настолько удачной, что последующие машины создавались на основе устройств этого семейства.

В 1965 году в США фирма Digital Equipment Corporation создала мини-компьютер PDP8. Относительно ЭВМ того периода устройство размером с современный холодильник казалось миниатюрным. Проект имел коммерческий успех – производители продали порядка 50 тыс. экземпляров компьютеров PDP8. Аналоги данной системы существовали повсеместно. Разработки по американскому прототипу в СССР назывались Электроника-100, Саратов-2.

Самостоятельная разработка СССР вышла в 1970 году. В машине, получившей название «Наири-3», использовался математический и машинный языки.

В 1971 году Советский Союз выпустил первые модели Единой системы ЭВМ на архитектуре IBM 360. Быстродействие этих аппаратов достигало 350 тыс. операций в секунду. С развитием компьютерных технологий производительность компьютеров ЕС увеличилась до десятков миллионов операций в секунду. Но после распада СССР дальнейшие разработки остановились.

Наиболее производительной ЭВМ III периода считается ILLIAC 4. Созданный в 1972 году в США компьютер характеризовался конвейерной архитектурой. Отличительной особенностью 64-процессорной модели была производительность в 200 млн операций в секунду. ILLIAC 4 был способен решать системы уравнений частных производных.

Чем обусловлено появление

С развитием авиации и космической техники возрастала потребность в более надежных и компактных компьютерах. Усовершенствование ЭВМ было возможным посредством изобретения новых технологий. Разработка интегральных схем американцами Джеком Килби и Робертом Нойсом позволила сделать скачок в развитии компьютерных технологий. Благодаря микросхемам техника III поколения стала производительней, надежней и миниатюрней.

На чем основано устройство, структурная схема

В компьютерах на базе микросхем появился процессор – объединенные в общий блок устройство управления и арифметико-логическое устройство. Процессор мог содержать несколько АЛУ, каждое из которых отвечало за отдельную функцию. Также в едином блоке могло быть несколько устройств управления: центральное и периферийные для управления конкретными отделами ЭВМ. Вычислительные устройства с несколькими процессорами выполняли несколько задач параллельно.

Оперативная память в машинах рассматриваемого периода делилась на блоки с автономным управлением. Развитие внутренних запоминающих устройств создало предпосылки к введению кэширования памяти. Возрастает объем внешней памяти. В 1773 году компания IBM первые выпустила жесткий диск в качестве внешнего носителя информации.

Применение аэродинамической силы при записи информации увеличило плотность записи. Емкость несменного носителя возросла до 30 Мбайт.

Накопитель был герметичным – это защищало рабочие поверхности дисков от пыли и грязи, что позволяло размещать головки очень близко к магнитной поверхности диска. Впервые был применен принцип аэродинамической магнитной головки, которая буквально парила над вращающейся поверхностью жесткого диска под действием аэродинамической силы.

В ЭВМ третьего периода появились клавиатура, плазменные и графические панели, дисплеи со световым карандашом и другие системы ввода информации.

Процессоры стали работать одновременно с вводом-выводом данных. Это осуществлялась посредством контроллера мультиплексного канала.

УВВ – устройство ввода-вывода;
ОЗУ – оперативное запоминающее устройство;
АЛУ – арифметико-логическое устройство;
УУ – устройство управления;
МК – контроллер мультиплексного канала;
СК – контроллер селекторного канала;
ВЗУ – внешнее запоминающее устройство.

Adblock
detector