СХЕМЫ И ЦИКЛЫ ХОЛОДИЛЬНЫХ МАШИН
Схема охлаждения с использованием холодильной машины. От охлаждаемого воздуха холодильной камеры, имеющего низкую температуру Т0, теплоноситель (хладагент) отнимает теплоту и передает ее внешней среде, имеющей более высокую температуру Т (рис. 30.5). При этом хладагент, циркулирующий в холодильной машине, совершает обратный круговой процесс, или холодильный цикл. Из энергетического баланса видно, что теплота, передаваемая холодильной машиной внешней среде q, больше теплоты, отбираемой от камеры охлаждения q, на величину механической работы /, затрачиваемой холодильной машиной:
Эффективность работы холодильной машины оценивается холодильным коэффициентом
где q — количество теплоты, удаляемой от охлаждаемого продукта, или удельная холодопроизводительность, Дж/кг; ζ—удельная механическая работа, Дж/кг.
Холодильный коэффициент в холодильной технике аналогичен термическому КПД тепловых машин, работающих по прямому циклу Карно
Компрессионные холодильные машины. В зависимости от применяемого рабочего вещества компрессионные холодильные машины разделяют на газовые (воздушные) и паровые.
Воздушная холодильная машина — самая старая из всех холодильных машин. Промышленное получение холода впервые осуществлено в таких машинах. Принцип действия воздушной холодильной машины состоит в следующем (рис. 30.6, а).
Воздух из охлаждаемого помещения I засасывается компрессором II и после адиабатического сжатия выталкивается в охладитель III, где охлаждается водой при постоянном давлении. Далее воздух поступает в детандер (расширительный цилиндр) IV и совершает в нем полезную работу в процессе адиабатического расширения до первоначального давления. При этом температура воздуха снижается до -60. -70 «С. Воздух поступает в охлаждаемое помещение.
На рисунке 30.6 теоретический цикл воздушной холодильной машины изображен на диаграммах в координатах «давление р — удельный объем v» и «температура Т—энтропия.
В координатах р—v (рис. 30.6, а) рабочий процесс выглядит следующим образом. Параметры воздуха в охлаждаемом помещении Т соответствуют состоянию точки 1. В компрессоре II воздух сжимается адиабатически до состояния, соответствующего точке 2. Линия 1—2 является адиабатой сжатия. Далее в охладителе III сжатый воздух охлаждается при постоянном давлении до состояния, характеризуемого точкой 3. Перейдя в расширительный цилиндр IV, воздух расширяется адиабатически до начального давления ро, соответствующего точке 4, и направляется в камеру охлаждения I, где отдает свою теплоту, а сам нагревается при постоянном давлении до состояния, соответствующего исходной точке 1. При расширении в расширительном цилиндре воздух совершает механическую работу, идущую на частичную компенсацию затрат энергии при сжатии воздуха в компрессоре. Итак, полный цикл преобразования параметров в данной холодильной машине состоит из двух адиабат 1—2 и 3—4 и двух изобар 2—3 и 4—1.
Площадь l-2-a-b-l на диаграмме соответствует работе, совершаемой компрессором; площадь З-4-b-а-З — работе, совершаемой сжатым воздухом в расширительном цилиндре. Разность этих площадей, равная площади фигуры 1-2-3-4-1, остается некомпенсированной и должна быть подведена к компрессору от внешнего источника работы.
В диаграмме T—s (рис. 30.6, в) теоретический цикл холодильной машины выглядит следующим образом. Изоэнтропическое сжатие в компрессоре изображается вертикалью, соответствующей процессу с постоянной энтропией. Эта вертикаль проводится от точки 1, лежащей на изобаре р = const, до изобары р — const. Точку 1 на изобаре р = const выбирают соответствующей начальной температуре Т1. Точка 2 на изобаре р — const соответствует температуре конца процесса сжатия Т2. Процесс охлаждения в охладителе III, протекающий при постоянном давлении, изображается отрезком изобары р = const, на котором точка 3 соответствует температуре окончания охлаждения Т3. Процесс адиабатического расширения в цилиндре IV изображается изоэнтропой 3—4, так как протекает при постоянной энтропии, или без потерь энергии. Точке 4 соответствует температура окончания расширения Т4. Процесс отдачи теплоты охлажденным воздухом в камере охлаждения, или процесс его нагревания в данной камере, происходит по изобаре р = const до состояния точки 1.
На диаграмме T—s (см. рис. 30.6, в) хорошо виден основной недостаток воздушной холодильной машины. Работа цикла этой машины l соответствует площади 1-2-3-4-1; она равна разности работ компрессора (площадь d-2-3-c-d) и расширительного цилиндра (площадь с-4-l-d-c). Работа же обратного цикла Карно lк, состоящего из двух адиабат 1—2′ и 3—4′ и двух изотерм 2’—3 и 4’— 1, значительно меньше, т. е. lк
Поэтому фактический холодильный коэффициент £ф = q/1 будет меньше холодильного коэффициента eK = q/lK, который был бы, если бы машина работала по обратному циклу Карно, т. е. £ф
Холодильная машина
Рис. 1. Холодильная машина
Отдельным подвидом тепловых машин являются, так называемые, холодильные машины. Холодильная машина — тепловая машина, работающая по обратному циклу, т.е. круговому циклу, в котором рабочее тело совершает отрицательную работу. Визуализации таких машин условно одинакова (рис. 1).
Классически, холодильная машина состоит нагревательного элемента, рабочего тела и холодильной установки. Каждый из этих элементов может инженерно выглядит как угодно, рабочее тело чаще всего газ. Рабочее тело, совершая работу ( ), забирает энергию у холодильника ( ) и передаёт её нагревателю ( ). Нагревателем в данной системе также может быть окружающее пространство. Примером такой холодильной машины может служить обычных домашний холодильник. Электрический ток совершает работу по охлаждению внутренней камеры холодильника, передавая избыток теплоты на внешний радиатор (ребристая стенка из прутьев на задней стенке холодильника).
Тогда, исходя из закона сохранения энергии:
- где
- — внешняя работа над газом,
- — теплота, отданная нагревателю,
- — теплота, полученная от холодильника.
Аналогом КПД (коэффициента полезного действия) для холодильной установки является холодильный коэффициент. Логика у него точно такая же: отношение полезной работы к затраченной. Полезной теплотой в нашей системе является (т.к. нам необходимо охладить тело), тратим вы внешнюю работу ( ). Тогда:
Вывод: задачи на холодильную машину вводятся именной этой фразой. Единственное соотношение, которое может помочь в решении таких задач, это соотношение (1). Поиск соответствующих энергий чаще всего вопрос первого начала термодинамики и анализа процессов.
Холодильные машины
Холодильная машина – устройство для отвода теплоты от охлаждаемого тела, температура которого должна быть ниже, чем температура окружающей среды. Холодильные машины используются для получения температур от 10 до -150 0 С.Область более низких температур относится к криогенной технике. Холодильные машины отнимают теплоту от охлаждаемого тела и передают охлаждающей среде (воде или окружающему воздуху) с затратой энергии.
Применяются несколько типов холодильных машин:
— воздушные холодильные машины;
— паровые компрессорные холодильные машины;
— абсорбционные холодильные машины.
Воздушная холодильная машина. Хладагентом в ней служит воздух. Принцип ее действия заключается в следующем. Воздух из охлаждаемой камеры 3 засасывается компрессором 1, где подвергается адиабатическому сжатию. Сжатый воздух поступает затем в теплообменник 2, где охлаждается водой. Далее воздух направляется в расширительную машину – детандер 4, где расширяется и производит полезную работу. Температура воздуха при расширении снижается до -60…-70 0 С. Охлажденный воздух затем поступает в холодильную камеру 3, где отнимает тепло от охлаждаемого тела.
Холодильный коэффициент теоретического цикла воздушной холодильной машины равен
, (3.7)
где q1 — количество теплоты, отнимаемого от охлаждаемого тела, ;
q2 — количество теплоты, передаваемое охлаждающей воде, .
Рис.3.4-Схема воздушной холодильной машины
Паровая компрессорная холодильная машина. Рабочим телом такой машины являются низкокипящие тела: аммиак, фреоны и др. При атмосферном давлении температура их кипения ниже 0 0 С. Компрессор 1 сжимает пары рабочего тела, которые затем поступают в конденсатор 2, где отдают теплоту при постоянном давлении. Пары при этом конденсируются, превращаясь в жидкость за счет охлаждения водой. Далее жидкость проходит через дроссельный клапан 4, где расширяясь, превращается в пар. Затем рабочее тело виде пара поступает в охлаждаемую камеру 3 (испаритель), где при постоянных давлении и температуре насыщенный пар превращается в нагретый, отнимая теплоту от охлаждаемого тела. Далее пар подается в компрессор и цикл повторяется.
Холодильный коэффициент машины равен
. (3.8)
где q2 – количество теплоты, отнимаемое от охлаждающего тела, ;
l – затраченная работа, ;
i1 и i2 – энтальпия рабочего тела на входе и выходе из компрессора, ;
i — энтальпия рабочего тела на входе в испаритель, .
Рис.3.5-Схема паровой компрессорной холодильной машины
Паровая компрессорная холодильная машина имеет более высокий КПД, чем воздушная.
Абсорбционная холодильная машина. В основу принципа действия абсорбционной холодильной машины положено свойство растворов изменять температуру кипения в зависимости от концентрации. В этих машинах в качестве рабочего тела используется водно-аммиачный раствор, температура которого снижается с повышением концентрации аммиака в растворе (рис.3.12.).
Абсорбционная холодильная машина работает следующим образом. Пары аммиака из генератора 1 сжижаются в конденсаторе 2 и через редукционный вентиль 3 поступают в испаритель 4, находящийся в охлаждаемой камере. При дросселировании давление паров падает от рк до давления в испарителе рх, а температура снижается от t1 до t4 . Рабочее тело при этом переходит в газожидкостное состояние, отнимая теплоту Qx.
1 – генератор; 2 – конденсатор; 3 – редукционный вентиль;
4 – испаритель; 5 – абсорбер; 6 – насос.
Рис.3.6-Схема абсорбционной холодильной машины
Образовавшиеся в испарителе пары аммиака направляются в абсорбер 5, где поглощаются слабым водно-аммиачным раствором. Здесь использовано свойство слабого аммиачного раствора поглощать холодные пары аммиака. В абсорбер 5 из генератора 1 поступает слабый раствор аммиака, который по мере поглощения паров NH3 понижает свою концентрацию, а также давление паров рх и температуру t5. Насыщенный раствор аммиака насосом 6 перекачивается в генератор 1. В генераторе 1, благодаря подводу извне теплоты Qген, происходит кипение раствора при давлении рк с выделением почти чистого аммиака NH3. По мере отгонки аммиака раствор обедняется и отводится через редукционный вентиль в абсорбер 5. Выделенные пары аммиака поступают в конденсатор 2, где сжижаются путем отвода теплоты Qk. Перекачивающий насос 6 повышает давление раствора от Рх до Рк. Теплота растворения аммиака в абсорбере Qa отводится охлаждающей водой или воздухом.
Эффективность работы абсорбционной холодильной установки оценивается коэффициентом использования тепла
, (3.9)
где qx – холодопроизводительность, т. е. тепло, отбираемое в испарителе;
q1 – количество тепла, подведенное греющим паром в генераторе;
qH – затраты тепла на работу насоса.
Абсорбционная холодильная машина имеет ряд преимуществ, благодаря которым они получили широкое распространение: простота обслуживания, невысокая стоимость, возможность использования отработанного тепла. К недостаткам относятся низкий КПД, большой расход воды.