Меню

Схема блок питания атх для автомобиля

—>Автозапчасти и СТО —>

Для переделки нам понадобится блок питания ATX, желательно 300 Вт.

БП от ПК выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. И так, рассказываем о типовых изменениях:

Алгоритм переделки следующий:
1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.
3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.

Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.
6. Далее собираем схему доработки.

Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будите ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.
7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт, 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.
8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.
9. Припаиваем клеммы и идем тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.

АмперВольтм-метр подключается так:

Вот что получилось.

Зарядное из компьютерного блока питания.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

Переделка

Основная переделка заключается в следующем , все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к . Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А , ее следует поменять на ту , которая стоит на 5 вольтовом выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Читайте также:  Сервисы по ремонту двигателей бмв

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока ,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус , используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита , хотя у меня при 9А не срабатывает , если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».

Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего «коня». Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр 🙂 Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.

И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

Начальная схема переделки выглядела так:

Блок питания решено было взять Codegen 250W 250X1, вот такой:

Была найдена принципиальная схема блока питания Codegen 250W 250X1:

Огромное количество схем к компьютерным блокам питания АТХ/АТ и блокам питания к ноутбукам можно найти в моём сборнике схем к компьютерным блокам питания. В сборнике есть и данная схема.

Для начала выпаиваем с платы БП всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.

Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.

На принципиальной схеме изменения показаны красным цветом:

Так как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.

Читайте также:  Что такое обезличенный ремонт автомобиля

Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.

Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт — 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.

Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.

В качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:

Такой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.

Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:

А вот и принципиальная схема измерителя:

Как можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика — 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.

Поясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.

Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт — транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).

Добавлены индикаторы на светодиодах:

  • VD1 » зелёный » — индикатор наличия напряжения на выходных клеммах
  • VD3 » синий » — индикатор срабатывания защиты
  • VD5 » красный » — индикатор обратного подключения аккумулятора (переполюсовки)

Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:

Ну и наконец фото уже собранного зарядного устройства:

Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!

Автор: Попов Вадим Сергеевич

ATX-совместимый БП компьютера для автомобиля

Схема блока питания форм-фактора ATX, при использовании автомобильной АКБ

Читайте также:  Замена масляного фильтра двигателя дастер

В данной статье рассмотрена схема самодельного блока питания, способного поддерживать работоспособность современных материнских плат формата ATX и компьютерной периферии при использовании в качестве источника энергии автомобильной аккумуляторной батареи +12В.

В основу конструкции легла схема, опубликованная на сайте carmp3.nm.ru. Однако указанный блок питания мог нормально работать только со старыми M/B формата AT, поскольку вырабатывал лишь напряжения ±12В, +5В и сигнал Power_Good. -5В требуется для некоторых плат на основе чипсетов nVidia (старую ISA-спецификацию не рассматриваю в силу неактуальности), +3.3В для нормальной работы процессора P4. Также был реализован механизм расширенного управления питанием (теперь включать и выключать Б/П можно удаленно, по сигналу с M/B).


Рис.1 Принципиальная схема Б/П

Основу Б/П представляет ШИМ (TL494 или аналоги). Два полевых MOSFET-транзистора коммутируют постоянное напряжение 12В с аккумулятора на импульсный трансформатор TR1. Выходные напряжения снимаются с вторичных обмоток, после выпрямления на полупериодных выпрямителях D3-D12, после чего попадают на общий дроссель DR1 и на индивидуальные L-фильтры DR2-DR6.

Стабилизируется только напряжение +5В, остальные – косвенно. Обратная связь стабилизатора получена от программируемого источника опорного напряжения TL431, выходная часть схемы отвязана от входной оптопарой PC817.
Включение Б/П в бортовую сеть, а также обработку сигнала PS_ON удаленного управления осуществляет схема управления на транзисторах Q1-Q2 и реле RL1. Для уверенного срабатывания реле возможно потребуется подобрать номиналы резисторов R1-R2.

Дежурное напряжение +5В_SB генерирует интегральный стабилизатор КР142ЕН5 (или импортный аналог 7805). Это напряжение есть всегда, пока клемма подключена к аккумулятору, поэтому микросхема обязательно устанавливается на теплоотвод.


Рис.2 Топология печатной платы

Конструктивно Б/П выполнен на односторонней печатной плате размером 85×95мм, вид со стороны деталей приведен на рис.2.


Рис.3 Фотография готовой конструкции

Трансформатор мотается медным одножильным проводом в лаковой изоляции диаметром 1 мм. в 2 нитки, т.е. суммарное сечение составило около 1.5 мм2. Феррит марки М2000НМ1-36 типоразмером 45?27?12. В качестве изоляции обмоток применялась черная тряпичная изолента (лакоткани под рукой, как назло, не оказалось). Порядок намотки следующий: на заизолированный феррит плотно наматывается первичная обмотка двойным проводом в 2 косы по 6 витков в каждой. Конец первой соединяется с началом второй, это соединится с +12В АКБ (точка #3 на рис.2). Свободные концы этой обмотки подсоединятся к транзисторам Q1 и Q2 (точки #1 и #2 на рис.2). Далее наматывается слой изоляции, и укладываются вторичные обмотки. Вторичная обмотка также симметричная, состоит из 2-х половин. Каждая из половин в свою очередь состоит из 2-х отрезков в 8 и 6 витков. Обе половины соединены свободными концами 2-х 6-ти витковых обмоток (земля или точна #4 на рис.2). От стыков 8-ми и 6-ти витковых обмоток снимаются ±5В, сделаны отводы (точки #7 и #8 на рис.2). Со свободных концов снимаем ±12В (точки #5 и #6 на рис.2). Обмотка для +3.3В мотается поверх, после слоя изоляции. Она состоит из 2?7 витков (две половины, 7 витков в каждой), средней частью соединена с землей (точна #4 на рис.2). Свободные концы – к точкам #9 и #10 на рис.2. Все обмотки, естественно, мотаются в одну сторону. Т.к. пропаять такой пучок толстых проводов весьма сложно, выходы обмоток вместе с гибким монтажным проводом обжимались медными гильзами.

Общий дроссель DR1 берется от компьютерного Б/П, DR2-DR6 – оттуда же. Диоды D3 D8, D11 D12, и D5 D6 – в корпусе TO220 также выпаяны из компьютерного блока питания. Остальные диоды выпрямителя – диоды Шотки на ток 5-7 А. Оптопара также извлечена из того же Б/П, можно заменить на любую аналогичную.

Реле – любое на 12В и коммутируемый ток 20-40 А. Я взял реле из автомобильной сигнализации. Диоды D1 и D2 также любые, лишь бы подходили по току.

Диоды, полевые транзисторы и интегральный стабилизатор устанавливаются на радиатор через изолирующие прокладки. Величина тока срабатывания защитного предохранителя подбирается экспериментально, исходя из мощности имеющейся нагрузки. После отладки желательно залить всю схему в компаунд или эпоксидную смолу с целью предотвращения коррозии и механических повреждений Б/П.

Adblock
detector