Меню

Регулирование оборотов коллекторного двигателя схема

Регулятор оборотов коллекторного двигателя от стиральной машины

Прекрасный для самоделок мотор от стиральной машины имеет слишком высокие обороты, и малый ресурс на максимальных оборотах. Поэтому я применяю простой самодельный регулятор оборотов (без потери мощности). Схема опробована и показала прекрасный результат. Обороты регулируются примерно от 600 до max.

Потенциометр электрически изолирован от сети, что повышает безопасность пользования регулятором.

Симистор необходимо поставить на радиатор.

Оптопара (2 шт) практически любая, но EL814 имеет внутри 2 встречных светодиода, и просится в эту схему.

Высоковольтный транзистор можно поставить, например, IRF740 (от БП компьютера), но жалко такой мощный транзистор ставить в слаботочную цепь. Хорошо работают транзисторы 1N60, 13003, КТ940.

Вместо моста КЦ407 вполне подойдет мост из 1N4007, или любой на >300V, и ток >100mA.

Печатка в формате .lay5. Печатка нарисована «Вид со стороны М2 (пайка)», так что при выводе на принтер ее надо зеркалить. Цвет М2 = черный, фон = белый, остальные цвета не печатать. Контур платы (для обрезки) выполнен на стороне М2, и будет указателем границ платы после травления. Перед запайкой деталей его следует удалить. В печатку добавлен рисунок деталей со стороны монтажа для переноса на печатку. Она тогда приобретает красивый и законченный вид.

Регулировка от 600 оборотов подходит для большинства самоделок, но для особых случаев предлагается схема с германиевым транзистором. Минимальные обороты удалось снизить до 200.

Минимальные обороты получил 200 об/мин (170-210, электронный тахометр на низких оборотах плохо меряет), транзистор Т3 поставил ГТ309, он прямой проводимости,и их много. Если поставить МП39, 40, 41, П13, 14, 15, то обороты должны еще снизиться, но уже не вижу надобности. Главное, что таких транзисторов как грязи, в отличие от МП37 (смотри форум).

Плавный пуск прекрасно работает, Правда на валу мотора пусто, но от нагрузки на валу при пуске, подберу R5 при необходимости.

R5 = 0-3к3 в зависимости от нагрузки;; R6 = 18 Ом — 51 Ом — в зависимости от симистора, у меня сейчас этого резистора нет;; R4 = 3к — 10к — защита Т3;; RР1 = 2к-10к — регулятор скорости, связан с сетью, защита от сетевого напряжения оператора обязательна. Есть потенциометры с пластмассовой осью, желательно использовать. Это большой недостаток данной схемы, и если нет большой необходимости в малых оборотах, советую использовать V17 (от 600 об/мин).

С2 = плавный пуск, = время задержки включения мотора;; R5 = заряд С2, = наклон кривой заряда, = время разгона мотора;; R7 — время разряда С2 для следующего цикла плавного пуска (при 51к это примерно 2-3 сек)

Регулятор оборотов коллекторного двигателя постоянного тока.

Регулятор разрабатывался как замена китайского регулятора для 500 ваттного шпинделя.

Также были опробованы следующие применения при соответствующем источнике питания:
— Управлением регулирования скорости вращения других полярных двигателей.
— Диммирования ламп накаливания или светодиодных лент .
— Также возможно управлять мощностью нагревательных элементов (терморегулятор паяльника и др.).

Собственно схема:
Управление регулятором осуществляется через контроллер ЧПУ.

Также возможно использовать ручное управление при помощи переменного резистора.

Здесь надо обратить внимание на максимальное напряжение управляемого мотора. Т.к. максимальное напряжение на выходе регулятора может превышать необходимый уровень для управляемого двигателя.

В качестве силового транзистора работает IGBT-транзистор FGA25N120ANTD. Для нормальной работы этому транзистору нужен драйвер «раскачки», т.к. за ними надо было ехать на другой край города драйвер был сделан из транзисторов разной проводимости Т1 — BC547, Т2 — BF423 (какие были). Запитан драйвер 12 вольтами через DC/DC преобразователь от контроллера ЧПУ.
От самоиндукции двигателя был установлен быстродействующий диод RHRP3060.

Т.к. этот мотор «шумит» в сеть, попробовал заземление корпуса самого двигателя — картину не изменило. По этому был установил сетевой фильтр со сгоревшего блока питания, картина улучшилась. Рядом стоящий монитор перестал рябить.

После проб и экспериментов была разведена печатная плата:

Простейший регулятор оборотов электродвигателя своими руками

Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.

Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.

Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.

Характеристики самодельного контроллера

  • Диапазон напряжений (110-240 Вольт);
  • Возможность регулировки оборотов электродвигателя, от 9-99%;
  • Нагрузка, до 2,5 кВт;
  • Рабочая мощность, не более 300 Вт.

Самодельный регулятор оборотов для электродвигателя имеет низкий уровень шума, он позволяет осуществлять плавную стабилизацию оборотов и осуществлять мягкий пуск электродвигателя.

Ниже будет представлена схема регулятора оборотов для электродвигателя и принцип его работы.

Схема регулятора оборотов для электродвигателя

Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.

Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.

Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.

Мощность и нагрузка регулятора оборотов

К самодельному регулятору оборотов двигателя, сделанному по выше представленной схеме, можно подключить нагрузку не более 2 кВт. В случае увеличения нагрузки осуществляется замена главного симистора BT138/800. Если симистор устанавливается большего номинала, то его рекомендуется вынести за пределы общей платы, и обязательно установить на радиатор охлаждения, который можно сделать из куска алюминиевой полосы.

Примечательно то, что подобный регулятор можно использовать не только с электродвигателями, но и с лампами освещения. Таким образом, дёшево и сердито, можно собрать регулятор для яркости ламп освещения.

Подписывайтесь на мой канал в Дзен. Всем удачи, и мирного неба над головой!

Виды и устройство регуляторов оборотов коллекторных двигателей

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности — выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом.

Так различаются коллекторные двигатели параллельного и последовательного возбуждения.

Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения конденсатор заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего симистор открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный диммер для регулировки яркости ламп накаливания, обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере.

Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Принцип регулирования с микросхемами на постоянном токе — это конечно ШИМ — широтно-импульсная модуляция.

Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется.

Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

  • Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.
  • Смотрите также по этой теме: ШИМ — регуляторы оборотов двигателей на таймере 555
  • Андрей Повный

Надежная схема регулятора оборотов коллекторного двигателя без потерь мощности с обратной связью по Тахо

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Читайте также:  Мерседес вито замена датчика температуры двигателя

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение.

Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную.

Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение.

Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться.

Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:

  • Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры.

Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя.

Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится.

Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования.

Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров.

Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования.

Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя.

К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее.

Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

  • На рисунке ниже изображена типовая схема включения микросхемы.
  • Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:
  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате.

Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки.

Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы.

Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях.

Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

Регулятор оборотов коллекторного двигателя — своими руками, схема

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

  1. Коллекторные двигатели.
  2. Асинхронные двигатели.

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты.

После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится.

Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство

Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор — это вращающаяся часть, статор — это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.
  • Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.
  • Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.
  • Если говорить об их классификации, то можно говорить о:
  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.
Читайте также:  Тест драйвы со стиллавиным бмв х3

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Классификация может быть сделана также и по принципу возбуждения двигателя. В устройстве коллекторного двигателя, электрическое питание подаётся и на ротор и на статор двигателя (если в нём используются электромагниты).

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе.

При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения.

Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю.

Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением.

Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При изменении силы тока, эта частота может изменяться между 3 кГц и 5 кГц. Переменный резистор R2 служит для регулировки тока. При использовании электродвигателя в бытовых условиях, рекомендуется использовать регулятор стандартного типа.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора.

С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора.

При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

  1. Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

  1. Регулятор оборотов KA-18 ESC, предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
  2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
  3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

Виды, применение и устройство регулятора оборотов коллекторного двигателя

Устройство коллекторных двигателей имеет свои особенности, в частности это относится к такому узлу, как регулятор оборотов коллекторного электродвигателя. Существуют разные системы управления, которые мы рассмотрим ниже.

Варианты систем управления на заводских моделях движков

Реостатные регуляторы оборотов представляют собой систему, состоящую из реостата и сервопривода. С их помощью пассивная нагрузка включается последовательно, а сервопривод механически регулирует сопротивление. После подключения нагрузки излишки электроэнергии преобразуются в тепло. Это самый дешевый и простой вид регулятора, устанавливающийся на маломощных моделях.

К его недостаткам можно отнести:

  • Неоправданные тепловые потери, ведущие к снижению ресурса аккумуляторной батареи.
  • Часто возникающие потери на движущихся контактах реостата.
  • Перегрев конструкции, во избежание которого требуется принудительный отвод тепла.
  • Быстрый износ двигателя.

Поэтому реостатные регуляторы чаще используются в «любительских» устройствах (моделях, самодельных станках и т.д.).

Полупроводниковые регуляторы оборотов применяются чаще, так как энергия аккумуляторов используется более экономно.

Импульсный характер подачи питания на двигатель позволяет управлять частотой вращения за счет изменения длительности импульсов.

На рынке представлены самые разнообразные виды полупроводниковых регуляторов, включая модели с расширенным функционалом (вентилятором и другими приспособлениями).

Также регулировать обороты можно с помощью:

  • заводских плат от бытовой техники (пылесосов, миксеров и т.п.);
  • ЛАТРов;
  • кнопок от электроинструментов;
  • бытовых регуляторов освещения.

Однако при их применении могут возникать некоторые неудобства. Снижение оборотов двигателя ведет к резкому падению выдаваемой им мощности, поскольку напряжение питания понижается. Это не сказывается на работе маломощных насосов, вентиляторов и другой подобной техники, но для самодельных станков такая схема не годится.

Тахогенератор является более надежным устройством, так как он не позволяет двигателю терять мощность, даже если частота вращения ротора значительно снижается. Обычно тахогенератор устанавливается на заводских моделях моторов.

Его задача – сообщение количества оборотов якоря и передача их на плату управления, которая, в свою очередь, устанавливает количество оборотов на необходимом уровне.

Существует много схем регулирования оборотов с помощью тахогенератора.

Малогабаритные коллекторные двигатели различаются по размеру, числу максимальных оборотов, показателю энергопотребления, весу и другим характеристикам, что отражается на подборе системы управления. От типа исполнительного устройства, на котором будет использоваться движок, зависит количество функций, выполняемых регулятором оборотов, и их комбинация.

Дополнительные возможности регуляторов оборотов коллекторных электродвигателей

Часто технические условия эксплуатации мотора требуют наличия у регулятора оборотов дополнительных функций, например:

  • Реверс. Если транспортное средство должно иметь задний ход, на двигатель устанавливается регулятор с возможностью переполюсовки. Режим реверса на полных оборотах необходим крайне редко, поэтому обычно мотор работает не на полную мощность.
  • Опторазвязка. Эта функция нужна регуляторам, рассчитанным на повышение напряжения. Например, в радиоприемниках питание и силовые цепи разъединяются с помощью гальванической развязки. Таким образом обеспечивается защита чувствительной радиоаппаратуры от импульсных наводок из силовых цепей электродвигателя и регулятора и повышается показатель стабильности ее работы.
  • Тормоз. Многие механизмы должны не только быстро набирать обороты, но и моментально останавливаться. Торможение бывает «жестким» и «мягким». В первом случае регулятор закорачивает обмотку двигателя единовременно, во втором – в импульсном режиме, благодаря чему обороты снижаются плавно.
  • ВЕС-система. Она подходит для механизмов с низковольтным питанием. Будучи встроенной в цепь вторичного питания, система обеспечивает подачу энергии на сервопривод и платы радиоуправления с одной батареи, и необходимость установки добавочной батареи отпадает.

Виды коллекторных электродвигателей

Выбор устройства регулятора оборотов коллекторного двигателя зависит от модели мотора, ваших финансовых возможностей, типа исполнительного механизма и других нюансов. Сейчас промышленность выпускает коллекторные двигатели постоянного и переменного тока со следующими принципами возбуждения:

При этом движки переменного тока бывают только с последовательным или параллельным возбуждением. Они работают следующим образом:

  • Электромагнитное поле возникает вследствие прохождения электрического тока через коммутированные обмотки ротора и статора.
  • Это поле приводит ротор в движение.
  • Передача тока на обмотки ротора осуществляется с помощью щеток, изготовленных из графита либо из смеси меди и графита.

Реверсирование двигателя достигается путем изменения направления течения тока в роторе или статоре (во избежание перемагничивания сердечников направление обычно изменяется в роторе). Если изменить направление тока в обеих катушках, направление вращения мотора остается прежним.

Одной из причин популярности движков переменного тока является их способность работать и от переменного, и от постоянного тока. К тому же они отличаются простотой управления и изготовления.

Устройства этого типа устанавливаются на электроинструментах, бытовых приборах, легкомоторных моделях и транспортных средствах с малогабаритными двигателями. Такой недостаток, как ограниченный заряд аккумулятора, компенсируется малым потреблением электроэнергии, многофункциональностью и небольшими габаритами.

Читайте также:  Выброс машиной углекислого газа

Регулятор оборотов коллекторных электрических двигателей: виды, типы, схемы двигателя и правила применения

Разновидности коллекторных электродвигателей и области их применения

По принципу работы их можно разделить на пять основных видов, каждый из которых, можно купить без всяких проблем.

По типу питания:

  • постоянного тока;
  • переменного тока.

По разновидности принципа возбуждения:

  • параллельного возбуждения;
  • последовательного возбуждения;
  • смешанного возбуждения.

Стоит заметить, что в двигателях переменного тока используются только последовательное и параллельное возбуждение. Конструктивно такие электродвигатели состоят из четырёх основных компонентов:

  • статора;
  • ротора;
  • коллектора;
  • токопроводящих щёток.

Электрический ток, проходя через коммутированные обмотки статора и ротора, вызывает возникновение электромагнитного поля, которое, в свою очередь, приводит в движение ротор. Щётки применяются для передачи тока на обмотки ротора. Их изготавливают из мягкого токопроводящего материала. В большинстве случаев это графит или смеси графита с медью.

Если изменить направление течения тока в статоре или роторе, произойдёт реверсирование двигателя. Обычно это делают с обмотками ротора, что позволяет избежать перемагничивания сердечников. В случае изменения тока в обеих катушках – направление вращения двигателя останется прежним.

Наибольшее распространение получили коллекторные электродвигатели переменного тока. Причин такой популярности несколько. К ним можно отнести относительную простоту их изготовления и управления. Также важна их способность работать от переменного и от постоянного тока.

При подключении к источнику питания переменного тока, изменение электромагнитного поля будет происходить одновременно в обеих обмотках двигателя (статоре и роторе), что не приведёт к изменению направления вращения двигателя. Для реверсирования таких моторов делают, переполюсовку обмотки ротора.

Хотя их КПД несколько ниже, чем у собратьев, они широко применяются в массе бытовых приборов: мясорубках, вентиляторах, электроинструменте. Кроме того, стоит упомянуть об отдельном русле их применения. Речь идёт о малогабаритных двигателях для легкомоторных моделей.

Среди моделистов они заслужили всеобщее признание из-за малого потребления электроэнергии, что очень важно по причине ограниченного заряда аккумулятора, и многофункциональности систем их управления.

Такой факт резко снижает вес и габариты изделий. Данные системы редко изготавливают вручную, но это с лихвой перекрывается изобилием всевозможных конструкций и модификаций, заводских устройств.

Хотя, дешёвым это удовольствие не назовёшь.

По тем же причинам коллекторные электродвигатели пользуются успехом и у многих «кулибиных».

Сегодня довольно популярны коллекторные электродвигатели 220в от стиральных машин-автоматов. Однако, не все торопятся использовать их в своих самодельных конструкциях.

И дело не в том, что люди не знают, как подключать такие двигатели, а скорее сомневаются в их поведении под нагрузкой и возможности регулировки оборотов.

Если такая возможность есть, то как это отразиться на их мощности? И ещё много других, связанных с дальнейшим применением, и носящим сугубо практичный характер, вопросов.

Разновидностей коллекторных электродвигателей всех трёх систем возбуждения имеется множество. Равно, как и разнообразных схем управления их оборотов. Существует немало регуляторов фабричного изготовления.

А на просторах интернета можно найти большое количество различных самодельных схем.

В конечном итоге, вам придётся выбирать оптимальный вариант для каждого конкретного случая отдельно, исходя из собственных навыков, финансовых возможностей и параметров имеющегося двигателя.

Все нюансы в одной статье описать невозможно. Поэтому попробуем разобраться с этим вопросом на примере вышеупомянутого типа двигателей, исходя из их относительной простоты и широкой распространённости.

Способов управления оборотами коллекторных электродвигателей существует масса. Для этого можно применять:

  • ЛАТРы;
  • заводские платы регулировки оборотов от бытовой техники (миксеры или пылесосы);
  • кнопки от электроинструментов;
  • бытовые регуляторы освещения.

Одним словом — любые устройства, регулирующие напряжение. Однако, у такой системы есть весьма ощутимый изъян. При снижении оборотов, за счёт понижения напряжения питания, резко падает и выдаваемая мощность двигателя.

Так, уже при 600 оборотах в минуту вы без особого труда сможете рукой остановить вал мотора. Этот нюанс может не мешать работе, к примеру, при изготовлении регулятора оборотов вентилятора 220в или маломощных насосов.

Но при изготовлении самодельных станков, такая схема абсолютно не применима.

В таких случаях можно применить тахогенератор. В упомянутых электродвигателях, он установлен изначально на заводе. Его функция – сообщать количество оборотов якоря двигателя и передавать их на плату управления, которая уже будет устанавливать их на необходимом уровне, с помощью силовых симисторов.

С таким регулятором оборотов электродвигателя не будет теряться мощность даже при значительном снижении частоты вращения ротора. Таких схем существует достаточное количество, а их изготовление в домашних условиях не должно вызвать лишних проблем и финансовых затрат. На каком, из предлагаемых вариантов, регуляторов оборотов остановить свой выбор, зависит только от вас.

Отдельно стоит упомянуть малогабаритные коллекторные двигатели, применяемые в моделизме.

Их огромное разнообразие, включая габариты, вес, максимальные обороты и энергопотребление, порождают соответствующее количество систем их управления.

В этом случае, количество функций, возлагаемых на регулятор оборотов, значительно возрастает, а их комбинации могут значительно отличаться, в зависимости от типа модели, на которой будут использоваться.

На модельных двигателях, как и на бытовых, и промышленных, применяются несколько вариантов систем управления.

Реостатные регуляторы оборотов коллекторных двигателей

При подключении нагрузки, излишек электроэнергии превращается в тепло. Но такие регуляторы применяются лишь на дешёвых моделях, в которых стоят моторы малой мощности, зато очень важна цена.

Из-за неоправданных тепловых потерь, ресурс аккумуляторной батареи модели заметно снижается. Не улучшают положение и потери на движущихся контактах реостата. А ведь долговечность аккумулятора является одним из основных критериев выбора систем управления оборотами мотора.

Отдельная неприятность — нежелательный перегрев всей конструкции, что не лучшим образом влияет на её долговечность и как следствие, необходимость принудительного отвода тепла. На серьёзные модели такие механически системы управления двигателем давно не устанавливают.

Полупроводниковые регуляторы оборотов коллекторных двигателей

Здоровой альтернативой вышеупомянутым устройствам, служат полупроводниковые системы. В них питание на двигатель подаётся импульсами, а управление частотой вращения достигается за счёт изменения их длительности. Это позволяет значительно снизить потребление драгоценной энергии аккумулятора. И вот на этом варианте, пожалуй, стоит остановиться подробней.

В связи с ростом популярности моделизма, а вследствие, и спроса на всевозможную автоматику для моделей, количество предложений на рынке резко выросло. Сейчас, совсем нетрудно приобрести регуляторы оборотов, фактически, под любой двигатель. Кроме того, возможно купить варианты с расширенным функционалом — надёжным вентилятором и другими приспособлениями.

Среди дополнительных возможностей можно выделить несколько основных

1. Реверс

В некоторых случаях на модели необходим задний ход. Поэтому многие регуляторы имеют возможность «переполюсовки» электродвигателя. Иногда реверс осуществляется не на полную мощность, ведь крайне редко есть необходимость такого режима на полных оборотах.

2.Тормоз

Нередко, на моделях возникает необходимость не только в быстром наборе оборотов двигателя, но и в его остановке. Такие системы часто применяют в автомоделизме. Торможение осуществляется за счёт закорачивания обмотки двигателя регулятором. Иногда делают «мягкий» тормоз. В таком случае закорачивание происходит импульсами, что позволяет плавно снижать обороты.

3.ВЕС-система

Устанавливается в моделях с низковольтным питанием. Её встраивают в цепь вторичного питания, что позволяет запитывать платы радиоуправления и сервопривод с одной батареи, вместо установки добавочной. Хоть эта функция не имеет отношения к управлению двигателем, может избавить вас от лишней головной боли.

4.Опторозвязка

Применяется в регуляторах, рассчитанных на повышение напряжение. В таких системах, с помощью гальванической развязки, разделяют силовые цепи и питание радиоприёмника. Делается это с целью обезопасить очень чувствительное радиооборудование от мощных импульсных наводок из силовых цепей регулятора и электродвигателя, и таким образом, увеличить стабильность их работы, что очень важно.

Какие же выводы?

Универсального ответа на этот вопрос нет, но купить изделие можно тогда, когда обладаешь вышеизложенной информацией.

Электронный регулятор хода

Электронный регулятор хода (англ. ESC, Electronic Speed Controller) — устройство для управления оборотами электродвигателя, применяемое на радиоуправляемых моделях с электрической силовой установкой.

Регулятор для автомодели 1/18

Электронный регулятор хода позволяет плавно варьировать электрическую мощность, подаваемую на электродвигатель.

В отличие от более простых резистивных регуляторов хода (в настоящее время практически не применяются в моделизме), которые управляли мощностью двигателя путём включения в цепь последовательно с мотором активной нагрузки, превращающей избыточную мощность в тепло, электронный регулятор хода обладает значительно более высоким КПД, не расходуя энергию аккумуляторной батареи на бесполезный нагрев.

Классификация

Электронные регуляторы хода в первую очередь классифицируются в зависимости от типа электродвигателя, для управления которыми предназначены:

  • Для коллекторных электродвигателей;
  • Для бесколлекторных бездатчиковых электродвигателей;
  • Для бесколлекторных электродвигателей с датчиками Холла.

В зависимости от типа моделей:

  • Для моделей самолетов и мотопланеров;
  • Для автомоделей;
  • Для судомоделей.
  • Для моделей вертолётов;

Все регуляторы также различаются в зависимости от максимального рабочего тока, напряжения батареи, возможностью работы с аккумуляторами различного типа.

Регуляторы хода для бесколлекторных электродвигателей принципиально отличаются от регуляторов хода для коллекторных моторов: помимо управления мощностью, подводимой к электромотору, они должны определять положение ротора в каждый момент времени, чтобы точно задавать фазы трех питающих напряжений, необходимых для работы бесколлекторного электромотора. Эти регуляторы обычно дороже регуляторов хода для коллекторных двигателей на ту же электрическую мощность. Регулятор хода бесколлекторных электромоторов обеспечивает работу только одного подключенного к нему бесколлекторного мотора, в то время как регулятор хода коллекторных моторов позволяет подсоединить к нему несколько коллекторных моторов последовательно или параллельно, с единственным ограничением, чтобы суммарный ток не превышал максимальный ток, на который рассчитан данный регулятор хода.

Регуляторы хода для судомоделей имеют дополнительную защиту от влаги и часто жидкостное охлаждение.

Регуляторы хода для автомоделей имеют развитый радиатор воздушного охлаждения и возможность реверса направления вращения электродвигателя.

Общее описание

Как правило, на регуляторе также лежит задача обеспечения питанием приемника и всех сервоприводов. Силовые аккумуляторы имеют напряжение 7.

4-48 В, в то время как для питания приборов и сервоприводов необходимо 5..6 В, поэтому в регулятор встраивается BEC (англ.) (преобразователь напряжения), преобразующий напряжение ходового аккумулятора в более низкое.

Мощность встроенного преобразователя напряжения ограничена 1,5-20 А.

Некоторые регуляторы могут иметь на корпусе кнопки для изменения параметров.

Другие — настраиваются с помощью обычной аппаратуры управления моделью (путём последовательных манипуляций ручкой газа на передатчике аппаратуры радиоуправления).

Некоторые фирмы выпускают специальные кабели для подключения регулятора к специальному настроечному пульту или персональному компьютеру для точной настройки.

Важная функция регулятора — Fail Safe. В случае, если модель потеряет сигнал от передатчика системы радиоуправления, например, при превышении дальности работы или помех в эфире, регулятор немедленно отключает двигатель, а сервомашинки переключатся в заранее выбранные позиции.

Как правило, планирование по плавной нисходящей спирали. Эта функция в меньшей степени позволяет сохранить модель от аварии.

Основные назначение — безопасность людей (особенно для крупных летательных аппаратов) и посадка ближе к моделисту, чем в случае с абсолютно неуправляемой моделью.

Adblock
detector