Рапсовое масло для дизельного двигателя
Но на более далекую перспективу самыми интересными будут, по всей видимости, именно топлива из возобновляемых ресурсов. И прежде всего — из биомассы (древесина, продукты сельскохозяйственного производства и др.), которой в мире ежегодно образуется 170-200 млрд. т, что энергетически эквивалентно 70—80 млрд. т нефти. При этом и теоретически, и экспериментально доказано: наиболее перспективны растительные масла — подсолнечное, хлопковое, соевое, льняное, пальмовое, арахисовое, сурепное и др. Их можно использовать в исходном виде или после химической обработки (облагораживания), а также в смеси с нефтяными топливами или спиртами. Причем наиболее интересны не сами масла, а их метиловые эфиры, получаемые как из отходов производства пищевых продуктов, так и непосредственно из растительных масел. Именно поэтому в Европе (Англия, Германия, Польша, Франция, Швеция) и в Азии (Китай, Индия, Индонезия) уже начали применять на АТС топлива из растительных масел и продуктов их химической переработки — метиловые эфир и спирт. Более того, в перечисленных странах приняты законодательные акты о производстве смесей из дизельного топлива и таких продуктов.
Достоинства и недостатки (табл. 1, в которой знаком «+» обозначено наличие преимуществ по сравнению со штатным дизельным топливом, знаком «-» — их отсутствие, а «+»/»-» — сочетание и того, и другого) альтернативных топлив, а также особенности их применения в дизелях обусловлены их составом, физико-химическими свойствами и возможностью получения из возобновляемого сырья.
Как из нее видно, самыми перспективными действительно следует считать топлива, получаемые из растительных масел и в первую очередь — из масла рапсового. В том числе и потому, что, во-первых, высокая урожайность рапса дает возможность с 1 га его посевов иметь 1000-15000 л биотоплива; во-вторых, делает сырьевую базу практически неисчерпаемой.
Рапсовое масло представляет собой смесь моно-, ди- и триацилглицеринов, которые содержат в своем составе молекулы различных жирных кислот (табл. 2), т. е. высокомолекулярных кислородсодержащих соединений с углеводородным основанием, связанных с молекулой глицерина.
Главное достоинство топлив, получаемых из рапсового масла, — практически полная биоразлагаемость. Содержащиеся в них 10—12 % масс, кислорода позволяют заметно уменьшить выбросы в атмосферу таких вредных веществ, как углеводород и сажа, а также оксидов азота — из-за снижения температур сгорания. Кроме того, рапсовое масло в действительности не содержит соединении серы; в нем нет и полициклических ароматических углеводородов — канцерогенов, обычно содержащихся в отработавших газах дизелей. Перспективным считается, как и в случае других масел, не само рапсовое масло, а получаемый из него метиловый эфир: в ряде стран Европы его уже используют в качестве самостоятельного топлива или добавки к дизельному топливу нефтяного происхождения. Например, в Германии действуют более 90 заводов по производству рапсового масла, а топливо «биодизель» (соотношение 43:8) на базе метилового эфира рапсового масла выпускают восемь предприятий.
Данный эфир представляет собой смесь метиловых эфиров жирных кислот. Получают его путем прямой переэтерификации ацилглицеринов рапсового масла с метиловым спиртом при температуре 353—363 К (80—90 °С) в присутствии едкого калия. По своим физико-химическим свойствам он близок к стандартным дизельным топливам, т. е. от самого масла отличается меньшими плотностью, вязкостью и температурой воспламенения, более высоким цетановым числом, поэтому может, что очень важно, подаваться в цилиндры двигателя штатной топливоподающей аппаратурой. Главное же, при работе на ней дизель становится экологически чище. Так, фирма «Фольксваген» провела исследования серийного четырехцилиндрового вихрекамерного безнаддувного дизеля размерностью S/D — 8,64/7,65 и мощностью 40 кВт (54 л. с.), в ходе которых он сначала работал на дизельном топливе (характеристики: пределы выкипания — 449—621 К, или 176—348 °С, плотность — 821 кг/м 3 , цетановое число — 52), а затем на метиловом эфире с температурами выкипания 575—629 К (302—386 °С). Установлено: при работе на стенде по тесту ЕСЕ и переводе с дизельного топлива на эфир рапсового масла выбросы монооксида углерода снижаются с 4,5 до 3,57 г/тест, углеводородов — с 0,82 до 0,37 г/тест, а оксидов азота, наоборот, возрастают с 2,56 до 3,01 г/тест. Снижается и дымность отработавших газов. Например, на режимах полной нагрузки — на 2 ед. по шкале «Бош» во всем диапазоне скоростных режимов работы, на частичных — на 0,5—1 ед. Уменьшается также эмиссия канцерогенов ароматических углеводородов. Например, на режимах принятого в США цикла FTP 75 она в 2 раза меньше.
Правда, при всех циклах расход метилэфира оказывается несколько (на -12 %) больше расхода дизельного топлива. Это связано с меньшей, чем у последнего (37,8 против 42,5 МДж/кг), теплотворной способностью. При работе на метилэфире увеличивается и эмиссия альдегидов. Но в целом дизель, работающий на таком топливе, отличается более низкой суммарной токсичностью отработавших газов.
К сожалению, метилэфир рапсового масла — химически активная (агрессивная) жидкость. Поэтому при его использовании в качестве добавок к дизельному топливу баки, трубопроводы и другие элементы конструкции топливной системы, контактирующие с ним, должны иметь защитное покрытие. Кроме того, его производство нельзя отнести к числу экологически чистых. Наконец, он дороже дизельного топлива. Поэтому рапсовое масло, казалось бы, всетаки предпочтительнее. Однако при работе дизеля на нем тоже возникает ряд проблем. В частности, многие специалисты отмечают, что через 100—200 ч работы дизеля на нем наблюдаются повышенные количество углеродистых отложений на поверхности камеры сгорания и закок-совывание сопловых отверстий распылителей форсунок. Что вполне правомерно: в данном масле много смолистых веществ, поэтому его коксуемость (0,4 %) выше коксуемости дизельного топлива (0,2 %). Тем не менее, если учесть, что ГОСТ 305—82 ограничивает последнюю величиной 0,3 %, то совершенно очевидно: подобрать смеси дизельного топлива и рапсового масла, удовлетворяющие требованиям ГОСТа, особого труда не представляет.
Еще одна проблема, возникающая при работе дизеля на рапсовом масле, — повышенная вязкость последнего: при нормальной (293 К, или 20 °С) температуре она на порядок выше, чем у стандартного дизельного топлива (соответственно 75 и 3,8 мм 2 /с). Однако при повышении температуры эта разница уменьшается. Например, при 313 К (40 °С) вязкость рапсового масла — 36 мм 2 /с, т. е. уменьшается вдвое, а при 343 К (70 °С) — до 17,5 мм 2 /с, или еще более чем вдвое. Но главное в том, что существенно меньшей вязкостью обладают смеси рапсового масла с дизельным топливом. Так, вязкость смеси, содержащей (по объему) 80 % дизельного топлива и 20 % рапсового масла, при температуре 292 К (20 °С) составляет 9 мм 2 /с, а при 313 К (40 °С), характерной для условий систем топливопо-дачи дизелей, — 5 мм 2 /с. Иначе говоря, становится соизмеримой с вязкостью чистого дизельного топлива (норматив: 3—6 мм 2 /с).
Таким образом, поскольку рапсовое масло по своим физико-химическим свойствам отличается от стандартного дизельного топлива, его целесообразно применять в смеси с последним. Тем более, что эти компоненты хорошо смешиваются, а смеси имеют свойства, позволяющие сжигать их в дизеле без внесения изменений в его конструкцию.
Авторы статьи оценивали экономические и экологические показатели дизеля, работающего на таком биотопливе, не только по научным публикациям. Они провели собственное испытание дизеля Д-245.12С (4 ЧН 11/12,5), выпускаемого Минским моторным заводом, в двух вариантах его комплектации.
Первый из вариантов был оснащен турбокомпрессором ТКР-6 Борисовского завода автоагрегатов, ТНВД мод. PP4M10Ulf (диаметр и ход плунжеров — 10 мм) чешской фирмы «Моторпал», форсунками ОАО «Куроаппаратура» (г. Вильнюс), отрегулированными на давление начала впрыскивания 21,5 МПа (215 кгс/см2) и имеющими распылитель DOP 119S534 фирмы «Моторпал» с пятью распыливающими отверстиями диаметром 0,34 мм и суммарной эффективной площадью распылителя в сборе, равной 0,250 мм 2 . Результаты исследований его по 13-ступенчатому испытательному циклу показали: при работе дизеля на смеси «80 % дизельного топлива + 20 % рапсового масла» экологические показатели заметно улучшаются: выброс легких углеводородов снижается с 1,519 до 0,965 г/( кВт • ч), т. е. на 36,5 %; оксидов азота — с 7,442 до 7,159 г/(кВт • ч), или на 3,8 %. Однако выброс монооксида углерода, напротив, возрастает на 9,5 % — с З,482 до З,814 г/( кВт • ч).
Последнее обусловлено некоторым (на 6—10 %) увеличением часового расхода топлива и соответствующим повышением мощности дизеля. В частности, при переводе двигателя на смесевое биотопливо на режиме максимального крутящего момента (п = 1500 мин -1 ) мощность выросла с 53,6 до 57,1 кВт (с 72,8 до 77,6 л. с.), а на режиме максимальной мощности (п = 2400 мин -1 ) — с 75,5 до 78,2 кВт (со 102,6 до 106,3 л. с.). Коэффициент α избытка воздуха остался при этом практически неизменным (соответственно 1,7 и 2,2 на указанных режимах), что объясняется меньшим количеством воздуха, необходимым для сгорания 1 кг топлива (14,3 кг/кг у дизельного топлива и 13,9 кг/кг у смеси).
Характерно, что переход с дизельного топлива на рассматриваемую смесь сказывается и на удельном эффективном расходе топлива: на режиме максимального крутящего момента он увеличивается с 225,8 до 231,8 г/(кВт•ч), или с 166,2 до 170,6 г/(л.с.•ч), а на режиме максимальной мощности — с 249,0 до 255,1 г/(кВт • ч), или с 183,3 до 187,8 г/(л.с. • ч). Причина — меньшая, чем у дизельного топлива, теплотворная способность смеси (соответственно 41,5 и 42,5 МДж/кг).
Эффективный КПД дизеля при таком переходе практически не изменился: на режиме максимального крутящего момента в обоих случаях он равен 37,5 %, а на режиме максимальной мощности — 34 %. Дымность отработавших газов на режиме максимального крутящего момента снизилась с 25 до 16 % по шкале Картриджа, а на режиме максимальной мощности — с 11 до 8 %. Наконец, после наработки 100 ч дизелем данной мощности коксования форсунок не отмечено.
Второй вариант оснащения дизеля Д-245.12С: топливная система производства Ногинского завода топливной аппаратуры, распылители мод. 171Р.10.03 Алтайского завода прецизионных изделий, имеющие 10 распыливающих отверстий диаметром 0,23 мм. Испытывали его на тракторе «Беларусь», причем в реальных условиях эксплуатации. Установлено: после 500 ч работы этого дизеля на смеси, содержащей 70 % дизельного топлива и 30 % рапсового масла, есть лишь частичное закоксовывание распылителей форсунок, которое практически не приводит к потере их работоспособности, хотя мощность двигателя снижает.
Таким образом, очевидно, что использование форсунок с меньшим числом распыливающих отверстий и, соответственно, большего их диаметра позволило значительно сократить или вообще избежать коксообразования. Причем для его полного устранения (и не только при работе на рапсовом масле) достаточно применять хорошо известные меры. Например, периодически работать на высокофорсированных режимах, периодически же подавать через распыливающие отверстия водотопливные эмульсии и т. п.
Топливо из рапса
28 февраля 2007 года Текст: Валерий Чумаков
Чуть больше столетия назад человечество совершенно добровольно ввергло себя в нефтяную зависимость. Сначала нам было хорошо, но к тому моменту, когда наступило окончательное привыкание, мы прочно запутались в сетях нефтеторговцев. Теперь нам становится все хуже, и мы лихорадочно ищем, чем заменить нефть и ее продукты. А между тем двигатели, работающие вместо бензина на спирту или подсолнечном масле, давным-давно существуют — просто в эпоху дешевой нефти о них позабыли.
Заправки RTC Fuel, действующие при финансовой поддержке Ford Motor Company, первыми в США стали предлагать максимально широкий выбор альтернативного топлива. Здесь есть возможность заправиться этанолом, пропаном, биодизелем и даже подключить к розетке электромобиль. Изюминка станции RTC Fuel — демонстрационный зал, где публика может ознакомиться с различными видами топлива
По счастью, бензин в машине редко кончается внезапно — водитель обычно заранее ищет заправку. Но ее все же может не оказаться поблизости, и тут впору позавидовать крестьянину, который в крайнем случае может скормить своей лошади если не собственный бутерброд, то пучок травы. В конечном счете и машины, и лошади, и люди питаются энергией, которую нам дарит Солнце . Но если живые организмы используют по большей части энергию «свежую», только что произведенную (и воспроизводимую), то техника потребляет энергию, которую природа раз и навсегда отложила в свои нефте-, газо- и углехранилища миллионы лет назад.
Возвращение к истокам
Еще в 1826 году американский изобретатель Сэмюэль Мори запатентовал двигатель, в котором в качестве топлива использовались растительный скипидар и спирт. В 1853 году было доказано, что растительное масло вполне можно употреблять в качестве горючего для паровых машин и пароходов. (В те далекие времена «пароходами» назывались в том числе и «паровозы» — вспомните «Попутную песню» Глинки и Кукольника: «Дым столбом — кипит, дымится пароход!») Первый настоящий четырехтактный двигатель внутреннего сгорания инженера Николауса Августа Отто , различными модификациями которого мы пользуемся и по сию пору, работал на этиловом спирте.
В начале 90-х годов XIX века Рудольф Дизель построил первый двигатель, работавший на угольной пыли. При запуске модель взорвалась, чуть не убив самого изобретателя. И следующий свой экспериментальный двигатель в 1894 году новатор заправил уже более дешевым и значительно менее опасным арахисовым маслом.
А Генри Форд как начал со «спиртовых» двигателей, так и поддерживал их вплоть до 40-х годов прошлого века. Возможно, одной из причин было то, что Генри сам был из фермеров и технологию производства домашнего спирта знал не понаслышке. Так или иначе, но первый его «квадрицикл», собранный в 1896 году, работал именно на спирту, несмотря на то, что автомобили немецких инженеров Готтлиба Даймлера и Карла Бенца к этому времени уже почти десятилетие заправлялись бензином. Первый по-настоящему массовый автомобиль, построенный Фордом в 1908 году, знаменитая «Модель Т», одинаково хорошо бегал и на этиловом спирте, и на бензине, и на их смеси. Форд был настолько уверен в будущем спиртовых автомобилей, что даже построил на Среднем Западе США спиртоперегонный завод. Вплоть до середины 20-х годов XX века 25% продаж компании Standard Oil на Среднем Западе приходилось именно на фордовский этиловый спирт.
1908 год. Генри Форд за рулем «автомобильного плуга» (так называли первые трактора). Ранние модели двигателей Форда работали на этаноле
Цены на спирт и цены на бензин в ту пору были примерно равны, но в 1907 году, после того как в Техасе были открыты крупные залежи нефти, бензин резко подешевел — до пяти центов за литр, в то время как цена спирта оставалась на уровне семи центов. Однако уже в самом скором времени спиртопроизводители опять уровняли их стоимость, сообразив, что для производства непищевого этанола можно использовать отходы сахарного тростника. Во время Первой мировой войны, после резкого скачка цен на нефть, популярность этанола поднялась до невиданных до того высот. В начале 1920-х годов модно стало заправляться спиртобензиновыми смесями, такими как Benzalcool, Koolmotor, Alcool, Natelite, Moltaco, Lattybentyl или Agrol.
Производству автомобильного спирта не помешал даже знаменитый американский «сухой закон» (восемнадцатая поправка к Конституции США о полном запрете торговли спиртными напитками), действовавший с 1919 по 1933 год. Заводы по производству автоэтанола, в отличие от предприятий по изготовлению виски, имели не 2–3, а всего лишь одну ректификационную (перегонную) колонну, ибо для биоэтанола, в отличие от пищевого спирта, второй и третьей перегонки не требовалось. Поэтому хозяину фабрики доказать, что он «гонит» свою продукцию именно для автомобилей, а не для их водителей, не составляло особого труда. Завод могли закрыть, только если его уличали в связи с бутлегерами.
Злую шутку со спиртовым топливом сыграла его доступность. Гнать спирт мог любой. Нефтепереработкой же занималось небольшое количество компаний. Богатели они, даже при равных продажах, значительно быстрее. И, приумножая капитал, внедряли новые технологии, которые делали бензин все более дешевым. К 1937 году нефтяное топливо стоило почти в полтора раза дешевле биологического. Но и это было бы еще ничего, ведь и сегодня сравнительная дороговизна бензина не заставляет автомобилистов срочно переоборудовать машины под дешевый газ. Однако химические гиганты, играя против фермеров, провели ряд «антирастительных мероприятий».
В 1893 году на Аугсбургском машиностроительном заводе Рудольф Дизель (слева) начал испытания нового типа двигателя внутреннего сгорания
Самый интересный гвоздь в крышку «биотопливного гроба» забили даже не нефтяники, а газетный магнат Вильям Херст и химический концерн DuPont. Все началось с бумаги. В те времена немалую ее часть производили из конопли. Конопля тогда еще считалась вполне безобидным растением, хорошим сырьем для легкой и бумажной промышленности. Но был у конопляной бумаги один существенный (с точки зрения DuPont) недостаток: при ее производстве, в отличие от бумаги, произведенной из древесины, не требовалось применять специальные разработанные компанией отбеливатели. И компания, подключив к делу Херста, владевшего кроме газет еще и множеством заводов, производивших как раз «деревянную» бумагу, повели наступление на эту сельхозкультуру. Отныне в американской прессе мирный Cannabis (это научное название конопли) именовался исключительно мексиканским словом marijuana и преподносился обывателю как страшное наркотическое зелье, производимое ненавистными американцам мексиканскими эмигрантами. Фокус удался, во второй половине 1930-х годов конопля в США была запрещена, а попутно была высмеяна и идея производства топлива из сельскохозяйственных растений.
В начале 1940-х, казалось бы, окончательно убитому биотопливу опять помогла восстать со смертного ложа война. Отрезанные от нефтеносных районов немцы в этот период частенько заправляли свои танки соевым и рапсовым маслом, ибо переделки двигателя для него почти не требовалось. Да и для нашего Т-34 растительное масло было допустимым видом топлива. А США, Великобритания и Швеция , дабы сэкономить ставший вдруг дефицитным нефтепродукт, заставили частников заливать в баки своих машин смесь из 35% спирта и 65% бензина. Но, как только были восстановлены прежние каналы нефтяных поставок, этанол и биодизель (дизельное топливо из растительных масел) вновь были забыты.
По улицам европейских городов ездит немало машин, «питающихся» рапсовым или подсолнечным маслом
Вспомнить о них спустя почти 30 лет помогла нефтяная «война», начавшаяся в 1973 году. После невиданного скачка цен на нефть правительство США, главной страны импортера, приняло несколько законов, поощрявших производство и применение автомобильного спирта и биодизеля. Впрочем, американцы и сами быстро разобрались что почем и начали спешно закупать европейские дизельные автомобили, которые могли работать на дешевом рапсовом, соевом и кукурузном масле. Если в начале 1970-х в Штатах не было ни одного предприятия, производившего автомобильный этанол (прочие спирты в основном импортировались), то к 1980 году их стало уже 10, а к 1984-му — 160. Однако в 1985-м война окончилась полным фиаско для стран ОПЕК, цены на бензин опять упали, а половина этаноловых заводов закрылась.
Ныне самое время о них вспомнить, ведь даже оптимистично настроенные аналитики считают, что цены на нефть не опустятся ниже 40 долларов за баррель. И, значит, биологическое, выращенное на полях топливо вновь станет экономически выгодным.
А «неэкономически» оно было выгодно всегда. Биотопливо относится к возобновляемым энергоисточникам и этим принципиально отличается от нефти, газа и угля, запасы которых на нашей планете конечны. Кроме того, биотопливо экологически относительно чисто. Ведь при его сжигании в атмосферу выбрасывается не больше углекислоты, чем потребили растения, из которых оно было выработано. Была тонна углекислого газа, ее за время своего роста «съела» высаженная на поле кукуруза, кукурузу перегнали в спирт, спирт сожгли, и эта самая тонна вернулась туда, откуда ее на время извлекли, — в атмосферу. Следовательно, общее содержание этого газа, который многие климатологи считают основной причиной «глобального потепления», не увеличивается. Экологи называют такое положение вещей «нулевой эмиссией СО2».
Мотосамогон
Самым распространенным видом биотоплива считается этанол и различной крепости его смеси с бензином, основными из которых являются E10 и E85.
С процессом производства этанола знаком каждый, кто хоть раз в жизни гнал самогон либо видел, как его гонят. В сущности, известный многим чистый «первач», если очистить его от посторонних примесей и довести «крепость» с максимальных 96 до 99 градусов, и есть «этанол». В качестве сырья подходят практически любые виды растений. Рожь, кукуруза, свекла, картофель, рис, просто древесина, тростник — все, чем богато местное сельское хозяйство. Сырье собирается, перемалывается и закладывается в бродильный чан. Туда же добавляются вода, дрожжи и специальные ферменты, облегчающие и ускоряющие процесс. Процесс брожения, в результате которого дрожжевой грибок разлагает содержащийся в бывших растениях сахар на свободно улетучивающуюся углекислоту и спирт, продолжается несколько дней. Когда содержание спирта в браге достигает 15%, брожение прекращается, брагу фильтруют и заливают в специальный бойлер, в котором ее доводят до температуры 80–90 градусов. Спиртовой пар прогоняют через охлаждающий дистиллятор (змеевик). В получившемся спирте еще содержится 4% воды. Для того чтобы от нее избавиться, «огненную жидкость» пропускают через специальные «молекулярные сита» — абсорбенты, вытягивающие лишнюю воду и доводящие «крепость» конечного продукта до 99,6 градуса. Из тонны ржи получается 375 литров спирта, из тонны кукурузы — 410 литров, из тонны проса — 510. Средний современный биозавод по производству этанола может производить до 150 миллионов литров топлива в год. Производительность крупных биозаводов уже сейчас достигает миллиарда литров в год (этого хватит примерно на 700 000 автомобилей).
Король Таиланда Пумипон Адульядет — активный сторонник возобновляемых источников энергии. Оранжевая мякоть пальмовых плодов идет в стране на производство биодизеля
Заливать чистый этанол в бак обычного автомобиля не рекомендуется, поскольку он является прекрасным растворителем и окислителем. Следовательно, все соприкасающиеся с ним детали должны быть изготовлены либо из нержавеющей стали, либо из пластика. Зато в переделанную под него машину с одинаковым успехом можно заливать и бензин, и этанол, и любые его смеси. Сейчас разными компаниями в мире уже разработаны 34 модели автомобилей, как легковых, так и грузовых, с «совмещенной» системой заправки, они называются Flexible-Fuel Vehicle (FFV). Только по дорогам Соединенных Штатов уже ездят более 6 миллиoнов таких автомобилей. Специально для них в 36 штатах на заправках продается спирто-бензиновая смесь E85 (85% этанола и 15% бензина). Бензин в нее добавляется исключительно для того, чтобы двигатель лучше заводился в холодную погоду. В Швеции такая смесь в обязательном порядке должна быть на любой крупной заправочной станции, а автомобили, работающие на этаноле, могут бесплатно въезжать в центр Стокгольма и освобождаются там от платы за парковку, а для их владельцев снижен автомобильный налог. Так поощряется внедрение автомобилей с переделанным под этанол двигателем.
А вот для того чтобы использовать в качестве топлива популярную на Западе смесь Е10 (10% этанола на 90% бензина), никаких изменений в двигателе не требуется. Более того, специалисты бразильской компании Petrobas утверждают, что даже 20-процентная этаноловая добавка никакого вреда автомобилю не причинит. Но о Бразилии разговор особый. Эта страна не слишком богата нефтью, зато богата сахарным тростником, из отходов которого только в прошлом году бразильцы «выгнали» 16,5 миллиарда литров этанола. А это 45% мирового производства. Как результат, цена на спиртовое топливо в этом «этаноловом эмирате» опустилась уже ниже полудоллара за литр (при себестоимости 15–20 центов), а на спирту здесь теперь не только ездит 40% автомобилей, но и летают самолеты, производимые компанией Embraer (Empresa Brasileira de Aeronautica).
Даже 10-процентная добавка этанола уже на многое способна. Она снижает выбросы парниковых газов почти на 20%, так как этанол способствует более полному сгоранию топлива и изменению процентного состава выхлопа в сторону менее опасных газов — углекислый газ СО2 вместо угарного CO (по данным Argonne National Laboratory — от 12 до 19%). Добавка увеличивает октановое число топлива на 3 единицы, почти вдвое снижает токсичность выхлопа, увеличивает температуру воспламенения топлива с 290 до 425 градусов, что уменьшает вероятность пожара, скажем, при протечке в топливной системе. Эффект от использования смеси Е10 в 2005 году только в США был сравним, по подсчетам экологов, с сокращением автомобильного парка страны на 1 000 000 машин.
Доходы из отходов
Не менее перспективным топливом считается биогаз. Плюс его заключается в том, что получать его можно из любой органики. В дело идут шелуха от семечек, сухие листья, навоз, птичий помет, пищевые отходы. Производство биогаза предельно просто. Сырье для него закладывается в особый герметичный реактор, где оно и разлагается в отсутствие кислорода при постоянном подогреве и перемешивании. Помогают ему в этом особые анаэробные бактерии. В процессе брожения не только вырабатывается необходимый биогаз, но и убивается вся вредоносная микрофлора, а также устраняются неприятные запахи. В результате на выходе получается не только топливо, но и идеальное удобрение, более эффективное, чем простой навоз. От одной коровы можно получить до 2,5 кубометра биогаза за сутки. Такого количества легковому автомобилю хватит для 30-километрового пробега. Примерно такой же производительностью обладают 5 телят на откорме, 8 свиней, 15 человек или 300 кур.
История биогаза начинается еще в начале XVII века, когда бельгийский доктор Ян Баптист ван Гельмонт заметил, что выделяющийся из разлагающейся биомассы «воздух» хорошо горит. Именно Ян Баптист предложил называть летучие воздухоподобные субстанции «газом» вместо слишком уж общего применявшегося до того греческого термина «хаос». Полтора столетия спустя, в 1776 году, Алессандро Вольта, исследуя «животное электричество», пришел к выводу о несомненной связи количества биомассы и количества выделяемого ею газа. Это сейчас нам такое наблюдение кажется банальным, а во времена, когда люди считали, что метан — это просто испорченный при прохождении через мертвую органику воздух, открытие Вольта было воспринято как сенсация. Сам метан в биогазе обнаружил английский химик Хэмфри Дэви в самом начале XIX века, а первая установка по его промышленному получению была создана в Индии , в Бомбее, еще в 1859 году.
Идея использования биогаза весьма нравится экологам, поскольку она позволяет утилизировать уходящий пока большей своей частью в атмосферу метан. А это второй по значимости после углекислоты парниковый газ. Например, в Новой Зеландии метановый «выхлоп» тамошних овец превосходит общие выбросы всех местных предприятий и автомобилей.
Дизель маслом не испортишь
Британский химик Пол Дэй с образцом топлива Aquafuel (справа), полученного смешиванием воды и дизельного топлива с добавлением касторового масла
В одном из ранних выпусков передачи «Сам себе режиссер», в рубрике «Слабо!», показывали умельца, заливавшего в топливный бак своей машины масло из фритюрницы. После чего машина заводилась и довольный хозяин лихо колесил на ней вокруг дома. Пораженным зрителям было невдомек, что ничего необычного в этом трюке не было.
Для дизельного двигателя, а именно им была оборудована машина лихача, нет почти никакой разницы, заливают в него солярку или подсолнечное масло. Более того, биотопливо сгорает в двигателе значительно лучше, чем солярка, и делает выхлоп в четыре раза более чистым. Иначе говоря, четыре биодизельных грузовика «дымят» так же, как один дизельный.
Для получения хорошего биодизельного топлива достаточно смешать в реакторной колонне девять частей масла с одной частью метилового спирта, добавить немного щелочи для ускорения реакции, подогреть полученную смесь до 60 градусов и немного подождать. Можно и не подогревать, но тогда ждать придется значительно дольше. В результате масло распадается на метиловый эфир (абсолютно безопасный, в отличие от метилового спирта), который сливается из колонны и заливается в топливный бак, и на оседающий на дно глицерин. Последний широко используется в производстве лекарств и красок, так что вопрос «куда его деть» обычно не стоит.
Технология производства настолько проста, что ее можно реализовать хоть на кухне. Несмотря на это, некоторые экономные водители умудряются упростить ее еще больше. Они просто заполняют баки отработанным маслом из промышленных фритюрниц, которое владельцы многочисленных фаст-фудов, дабы не заниматься утилизацией, готовы отдавать почти даром. И хотя плохо прогорающий глицерин качества топливу отнюдь не прибавляет, дешевизна горючего с лихвой компенсирует этот недостаток. Дело дошло до того, что в 2004 году в Англии был введен специальный штраф в 500 фунтов стерлингов (примерно 960 долларов) для водителей, попавшихся на фаст-фуд-заправках. При повторном попадании им уже грозит тюремное заключение сроком до 7 лет. Такая жесткость объясняется весьма просто. Чаще всего дешевое топливо покупают водители муниципального или корпоративного транспорта, ездящие на чужих машинах и мало заботящиеся об их состоянии. Содержащийся в масле глицерин создает нагар на распылительных форсунках, закоксовывает поршневые кольца и приводит к прогоранию клапанов, то есть к преждевременному износу двигателя. Кстати, автобус, заправленный маслом из фритюрницы, легко можно отличить от автобуса, заправленного соляркой, по запаху чуть пережаренной картошки, исходящему из выхлопной трубы.
Но лучшим сырьем для биодизеля пока считается не подсолнечник и даже не кукуруза, а рапс. Эта техническая культура почти не требует ухода, растет, где посадишь, дает высокие урожаи. Из тонны рапса можно выжать до 500 литров масла. Утечка рапсового масла, в отличие от солярки, не наносит экологического ущерба, так как в почве и в воде оно полностью разлагается за 2–3 недели. Наконец, рапс — прекрасная промежуточная культура. Если поля, отдыхающие после урожая пшеницы и просто пустующие, засеять рапсом, то потом та же пшеница будет расти на них значительно лучше. Сейчас только в России пустует более 13 миллионов гектаров плодородных пахотных земель. При средней урожайности рапса 13,7 центнера с гектара с них можно получить почти 18 миллионов тонн семян, из которых производится более 8 миллиардов литров топлива (примерно на 5 миллионов автомобилей).
Конечно, при всех достоинствах у биодизельного топлива есть и недостатки. Главный из них — высокая вязкость. На холоде (уже при –9) оно застывает и перестает прокачиваться по топливопроводу. Приходится либо искусственно его подогревать, либо разбавлять специальными присадками. Кроме того, хорошее биодизельное топливо (В100, чистый биодизель, без добавок) пока относительно дорого — его цена примерно на 30% выше, чем у солярки. Однако с помощью различных программ поддержки и налоговых льгот, которые предоставляются предприятиям-производителям, цены эти удается несколько снизить. Наиболее популярная среди дизелистов смесь В30 (30% биодизеля на 70% солярки) сейчас стоит уже даже несколько дешевле обычного топлива.
Особенно широко применяется биодизель в Германии . Здесь его производят почти 3,5 миллиарда литров в год. Далее идут Италия (1,2 миллиарда литров), Франция (1 миллиард литров), США (600 миллионов литров). Даже крошечные Мальта и Кипр влили в мировую биоканистру по своей капле — 4 и 2,5 миллиона литров соответственно. В России компания «ЛУКОЙЛ» тоже построила завод по производству биодизеля, однако изза отсутствия спроса среди отечественных водителей, больше доверяющих привычной и более дешевой солярке, биотопливо пока увозят в Финляндию. Где и продают с большим успехом.
Опилки и водоросли
«При цене сырой нефти 60 долларов за баррель становится оправданным многое из того, что раньше не имело смысла, — говорит Стив Хауэлл, директор Национальной комиссии по биодизельному топливу (США). — Вам еще предстоит познакомиться с источниками топлива, о существовании которых люди сейчас даже и не подозревают».
И правда, в последние годы совершенно новые технологии получения биотоплива появляются чем дальше, тем чаще. Недавно ученые из Университета штата Арканзас придумали способ его производства из куриного жира. Сразу три крупные компании— Global Green Solutions (Канада), Bio Fuel Systems (Испания), De Beers Fuel Limited (ЮАР) — заявили в прошлом году о начале строительства заводов по производству биодизеля из водорослей. Это одно из самых перспективных направлений: водоросли обладают настолько высокой урожайностью, что для обеспечения топливом всех автомобилей такой моторизированной страны, как США (220 миллионов авто на 300 миллионов жителей), нужно засадить водорослями всего 4 миллиона гектаров прудов. Это примерно 2% от пригодных территорий. Специалисты из небольшой американской компании Green Fuel Technologies (штат Массачусетс) пытаются весьма успешно совместить приятное с полезным, скармливая тем же водорослям выбросы из заводских труб. В результате урожайность «зеленого» топлива растет, а экологический ущерб от промышленных производств падает. А российские ученые из Иркутского института органической химии (ИрИОХ СО РАН) придумали, как можно дешевле превращать в автомобильный спирт отходы нашей лесозаготовки. Из пяти тонн древесных опилок получается тонна этанола, себестоимость которого в два раза ниже, чем у этанола, полученного из кукурузы или пшеницы. Жаль только, наши топливопроизводители не слишком интересуются такими разработками. Их пока вполне устраивает нефть, цена которой постоянно растет, а прирост ее добычи — падает.
А ведь у нас еще есть шанс пробиться в ряды будущих королей биозаправок. Всего-то и надо, что пустующие земли рапсом засеять. Да и пустующих прудов в России побольше будет, чем в США.
Читайте также на сайте «Вокруг Света»:
• Топливо двойного назначения