Основы теплотехники
Идеальный цикл Карно
Мы, как простые обыватели, редко задумываемся над тем, как работают тепловые двигателя, и уж тем более — не пытаемся вникнуть в суть происходящего внутри этих самых двигателей с точки зрения термодинамики. Среднестатистические познания механиков и техников ограничиваются тем, что, вроде как, что-то там внутри сгорает, и благодаря этому начинают шевелиться поршни (в простонародье — «поршня») , вращая другие детали и, как говорится, «процесс пошел».
Но, как всегда, среди людского роду-племени находятся наиболее дотошные представители, которым просто необходимо знать, как на самом деле все происходит и от чего все зависит. Наверное, на этих «дотошных» и «вездесущих», как на ветках деревьев и произрастают плоды, вскармливающие науку.
Итак, давайте попробуем разобраться — как же работает тепловой двигатель, и от чего зависит его эффективность?
Немного теории.
Тепловым двигателем называют такую машину, которая способна преобразовывать энергию тепла в энергию механического движения. Т. е. внутри этих механизмов, представляющих собой систему, что-то начинает вращаться, перемещаться и кувыркаться, если каким-либо образом изменить температуру внутри этой самой системы (как правило, тепло подводят к рабочему телу, которое чаще всего по ряду «уважительных» причин является газом) .
Ну и еще немного — все двигатели подразделяют, по большому счету, на двигатели внутреннего сгорания и двигатели внешнего сгорания.
У первых подвод тепла к элементу системы совершается внутри двигателя, у вторых — где-то снаружи. Забегая вперед, приведем пример: к двигателям внешнего сгорания относят, в частности, паровые двигатели, в которых тепло к рабочему телу (льду, воде или пару или какой-либо жидкости) подводится вне двигателя, путем сжигания какого-нибудь топлива (угля, мазута, дров и т. п.) в отдельно расположенной топке под емкостью (котлом) с рабочим телом. Потом разогретое рабочее тело вводится в тепловой двигатель (поступает в цилиндр) , и совершает полезную работу, отдавая при этом теплоту.
К двигателям внутреннего сгорания (ДВС) относятся (например) всем с детства знакомые дизели и карбюраторные двигатели, у которых рабочее тело сжигается и выделяет тепло внутри системы (в цилиндре) .
И в том и в другом случае речь идет о термодинамических процессах, т.е. процессах, вызывающих температурные колебания (или вызываемых температурными колебаниями) внутри системы.
В общем случае суть происходящего с точки зрения современной термодинамики описана здесь.
В начале XIX века талантливым французским инженером Сади Карно (1796-1832) были изучены термодинамические процессы, имеющие место в тепловых машинах, использующих в качестве рабочего тела идеальный газ. При этом все процессы в машинах рассматривались им как равновесные (обратимые) .
Обратимый процесс – это такой процесс, который протекает настолько медленно, что его можно рассматривать как последовательный переход от одного равновесного состояния к другому и т. д., причём весь этот процесс можно провести в обратном направлении без изменения совершённой работы и переданного количества теплоты. (Следует отметить, что все реальные процессы необратимы).
Целью исследований Карно было определение условий, при которых можно получить максимальную работу из теплоты, подведенной к тепловой машине, т. е. наиболее эффективно преобразовать тепловую энергию в механическую.
В конце XVIII – начале XIX века единственным типом тепловых машин, используемых человечеством в практических целях, являлись двигатели внешнего сгорания – т. е. паровые машины. КПД этих машин был чрезвычайно низким – не более 2 %, при этом не существовало какой-либо убедительной теории, указывающей пути к повышению их эффективности.
Карно провел тщательный анализ различных способов преобразования теплоты в работу на примере идеализированной модели поршневой паровой машины, при этом результаты и выводы, сделанные им, оказались справедливыми для любого типа машин, использующими тепловую энергию для выполнения механической работы.
В результате теоретических умозаключений Карно пришел к выводу, что максимального эффекта от преобразования теплоты в механическую энергию можно достичь, используя круговой цикл, состоящий из четырех последовательных процессов — изотермического, адиабатного, изотермического и опять адиабатного, который завершал цикл, возвращая систему к исходному состоянию.
Эта последовательность термодинамических процессов в тепловой машине получила название идеальный цикл Карно .
Изготовить реальный двигатель, преобразующий энергию тепла в механическую энергию строго по циклу, предложенному Карно, невозможно по технологическим причинам, поэтому цикл Карно считается неосуществимым и идеальным.
Николя Леонар Сади Карно считается одним из основателей термодинамики. В 28 лет он написал единственный дошедший до потомков труд — «Размышления о движущей силе огня и о машинах, способных развивать эту силу», в которой изложил принципиально новые для того времени взгляды на процессы в тепловых машинах, нашедшие отражение во втором законе термодинамики.
Сади Карно ввел в научную терминологию основные понятия термодинамики — идеальная тепловая машина, идеальный цикл, обратимость и необратимость термодинамических процессов.
В начале XIX века использовались лишь примитивные паровые машины, КПД которых не превышал несколько процентов, поскольку не существовало теории, способной разъяснить способы повышения эффективности использования тепловой энергии в двигателях. Работа Карно послужила первым путеводителем для инженеров в поисках эффективного использования теплоты в двигателях.
Карно умер совсем молодым, в возрасте 36 лет от заболевания холерой.
Поскольку в те годы холера считалась ужасным и неизлечимым недугом, тела и вещи умерших полагалось сжигать. Наверняка в огне погибли многие ценные труды этого талантливейшего инженера. Чудом уцелели лишь ставшие знаменитыми «Размышления о движущих силах огня…», которые этот самый огонь, уничтоживший все прочие труды Карно и его безжизненное тело, пожалел.
Последовательность процессов в цикле Карно
Рассмотрим предложенную Карно последовательность термодинамических процессов, получившую название идеальный цикл Карно.
Как известно, механическая работа может совершаться термодинамической системой лишь в том случае, когда протекает процесс, сопровождающийся изменением объема рабочего тела, т. е. изотермический, изобарный или адиабатный. При этом вся тепловая энергия может быть преобразована в работу лишь при изотермическом процессе (при изобарном и адиабатном процессе часть теплоты расходуется на изменение внутренней энергии рабочего тела) .
При изохорном процессе (протекающем при неизменном объеме рабочего тела) превращения теплоты в механическую работу исключается.
В исходном состоянии идеального цикла Карно рабочее тело (идеальный газ) имеет некоторые параметры p1 , V1 , T1 .
К рабочему телу от внешнего источника, называемого нагревателем , подводится теплота, которую система (тепловая машина) начинает использовать по изотермическому процессу.
Как отмечалось выше, при изотермическом процессе переменными являются два основных параметра рабочего тела — давление и объем, соотношение между которым обратно пропорционально (закономерность Бойля-Мариотта) . При этом вся подведенная к рабочему телу теплота расходуется исключительно на совершение механической работы; внутренняя энергия рабочего тела остается неизменной и затрат теплоты, полученной от внешнего нагревателя, не требует. Поэтому выбор первого термодинамического процесса в цикле Карно по изотерме вполне логичен — это позволяет максимально использовать полученное от нагревателя тепло для выполнения механической работы.
По окончании изотермического процесса рабочее тело имеет параметры p2 , V2 , T1 .
Этот процесс цикла Карно на диаграмме (рис. 1) обозначен цифрами 1-2.
Поскольку цикл Карно является обратимым и круговым, т. е. все протекающие в нем термодинамические процессы должны возвращать рабочее тело к исходным параметрам, становится очевидным, что в цикле должен присутствовать еще хотя бы один изотермический процесс. При этом его течение должно сопровождаться охлаждением рабочего тела, т. е. передачей теплоты от системы во внешнюю среду, иначе к точке с начальными параметрами не вернуться. Если сразу после первого процесса запустить второй изотермический процесс, то суммарная работа цикла будет минимальна, поскольку площадь графика, характеризующая выполненную системой механическую работу (на рис. 1 заштрихована) будет мала или вообще равна нулю (если прямая и обратная изотермы совпадают) .
По этой причине С. Карно в качестве второго термодинамического процесса для своего цикла применил адиабатный процесс, протекающий без теплообмена системы с внешней средой. При этом работа выполняется за счет изменения внутренней энергии рабочего тела, которое продолжает расширяться и охлаждаться до температуры Т2 . На диаграмме цикла Карно этот участок заключен между цифрами 2-3.
Использование адиабатного процесса вслед за изотермическим позволяет получить от системы некоторую механическую работу уже без подвода теплоты от нагревателя, за счет использования внутренней энергии рабочего тела.
Параметры рабочего тела по окончанию этого процесса — p3 , V3 , T2 .
Следующим звеном цикла Карно является второй изотермический процесс, который, как уже рассматривалось выше, должен быть отрицательным, т. е. сопровождаться передачей тепла от рабочего тела во внешнюю среду другому телу, называемому в данном случае холодильником .
На диаграмме цикла этот процесс обозначен цифрами 3-4.
Течение процесса сопровождается уменьшением объема и увеличением давления рабочего тела (сжатием) , при этом его температура остается постоянной за счет отдачи тепла холодильнику.
Параметры рабочего тела по окончании этого процесса — p4 , V4 , T2 .
Заключительный процесс цикла Карно, возвращающий систему в исходное состояние с начальными параметрами p1 , V1 , T1 — адиабатный.
Передача тепла холодильнику прекращается. При этом рабочее тело продолжает уменьшаться в объеме (сжиматься) , за счет совершения над ним некоторой внешней работы, которая для процесса является отрицательной.
Внутренняя энергия рабочего тела при этом увеличивается, поскольку часть внешней работы расходуется на его нагрев.
Этот процесс на диаграмме обозначен цифрами 4-1.
Для современного специалиста-теплотехника предложенный Карно цикл вполне логичен и не вызовет особых эмоций – наиболее рациональное превращение теплоты в механическую энергию не может осуществляться по иному пути, как с помощью изотермического процесса. Возврат к начальной точке цикла без затрат энергии на паразитные внутренние процессы системы тоже должен проходить по изотерме. А в качестве промежуточных процессов, исключающих потери теплоты во внешнюю среду, наиболее логичны процессы адиабатные.
Тем не менее, не следует забывать, что на момент написания «Размышлений о движущей силы огня и о машинах, способных развивать эту силу» никаких теоретических изысканий в области тепловых двигателей не проводилось, поэтому труд молодого француза был поистине революционным.
Анализ полученной Карно круговой p-V диаграммы цикла показывает, что системой выполнена механическая работа, величина которой характеризуется площадью, заключенной между кривой, ограниченной точками 1-2-3 и кривой, ограниченной точками 3-4-1. При этом вся выполненная системой работа будет равна сумме работ, выполненных в течение каждого из четырех последовательных термодинамических процессов, перечисленных выше.
Очевидно, что работа, выполненная рабочим телом в течение прямого и обратного адиабатных процессов равна по величине, но имеет разный знак (положительная в первом процессе, и отрицательная во втором) , т. е. сумма этих работ равна нулю. А работа, выполненная в течение прямого изотермического процесса больше, чем работа, совершенная во время обратного изотермического процесса.
Графически это поясняется разной площадью диаграммы, заключенной между абсциссой и соответственно первой и второй изотермой. Чем выше расположена первая изотерма на диаграмме относительной второй (обратной) изотермы, тем большую работу совершит рабочее тело.
Если рассмотреть T-V диаграмму процесса, то она будет представлять плоскую фигуру (например, ромб) , в которой две изотермы (прямая и обратная) параллельны одной из осей (температурной) , а адиабаты будут параллельны друг другу.
Из этого следует, что выполненная системой полезная работа будет тем больше, чем больше разница между температурой нагревателя и температурой холодильника, т. е. чем больше перепад температур между Т1 и Т2 (расстояние между верхней и нижней изотермой на T-V диаграмме) .
Математический анализ предложенной Сади Карно модели идеального цикла показывает, что максимальный термический КПД тепловой машины может быть определен из соотношения:
где: Т1 и Т2 – температура рабочего тела (газа) соответственно в начале и конце цикла.
Эта простая формула позволяет сделать два основных вывода — о пути повышения КПД тепловых машин и о том, что невозможно создать тепловую машину, коэффициент полезного действия которой будет равен единице, т. е. 100 %. Действительно – дробь Т2/Т1 может быть равна нулю лишь в том случае, если ее числитель равен нулю, либо знаменатель равен бесконечности. И то и другое – нереально, поскольку невозможно охладить материальное тело до температуры абсолютного нуля, и невозможно начальную температуру рабочего тела сделать бесконечной, поскольку само понятие тела в этом случае потеряет смысл; кроме того — невозможно изготовить реальный двигатель, детали и узлы которого способны выдержать такую температуру.
Цикл Карно является эталоном, к которому стремятся инженеры, проектирующие тепловые машины. В условиях реальных температур, верхний предел которых определяется прочностью материалов, а нижний соответствует температуре окружающей среды, термический КПД цикла Карно может достигать величины 0,7…0,8.
Любой реальный тепловой двигатель будет тем совершеннее, чем ближе его КПД к расчетному КПД цикла Карно, протекающего в тех же температурных границах.
Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)
Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):
Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):