Отделители жидкости и их применение в целях сохранности холодильных компрессоров
Ключевую роль в функционировании промышленных холодильных установок играют холодильные компрессоры, благодаря которым осуществляется парокомпрессионный цикл производства искусственного холода. Надежная конструкция винтовых и поршневых холодильных компрессоров обеспечивает длительный срок функционирования оборудования при условии осуществления постоянного их технического обслуживания и своевременного ремонта. Также немаловажным фактором обеспечения эффективного функционирования холодильной системы предприятия является правильные подбор и взаимная компоновка основного и вспомогательного оборудования. Ресивер, отделитель жидкости и влагоотделитель, маслоотделитель, теплообменник, сам компрессор, предохранители, элементы системы управления, другое оборудование – построение холодильной системы, имея общие черты, различается для каждого конкретного предприятия. Специалисты НПП «Холод», успешно работая на международном рынке промышленного холода, являются экспертами в вопросах холодильной техники. Обращаясь к нам, вы получаете идеально продуманные проекты и качественно выполненные работы для вашего предприятия.
Защита холодильного компрессора при работе промышленной холодильной установки
Самой большой угрозой при работе промышленных холодильных компрессоров является гидравлический удар, который происходит вследствие влажного хода компрессора, при котором в цилиндре накапливаются капли жидкости или масла, поступающие туда вместе с парами хладагента. Гидравлический удар приводит не только к поломке холодильного компрессора и остановке холодильной машины, но может вызвать и человеческие жертвы (особенно в аммиачных холодильных установках, которые являются объектами повышенной опасности). Поэтому для устранения угрозы влажного хода на линии всасывания перед компрессором устанавливается отделитель жидкости – резервуар, назначение которого состоит в улавливании, временном накоплении и выведении капель хладагента, которые вместе с паром выносятся из испарительной системы. Задача отделителя жидкости реализуется как при подключении установки и в процессе ее эксплуатации, так и после оттаивания испарителя.
Очищение воздушных паров для обеспечения безопасного течения компрессионного цикла применяется не только в холодильных системах. Поршневые компрессоры также часто используют в качестве воздушных компрессоров при ремонтных и монтажных работах в строительстве, в составе буровых установок горнорудной и угольной промышленности, в машиностроении, металлургии, медицине и других областях. И для сохранности воздушного холодильного компрессора при осуществлении его работы обязательно применяется промышленный влагоотделитель, принцип действия которого схож с принципом работы отделителя жидкости.
Принцип работы отделителя жидкости
Принцип работы отделителя жидкости заключается в том, что с помощью гравитационных и центробежных сил относительно тяжелые капли жидкости (масла и хладагента), которые могут повредить холодильному компрессору, отделяются от нагретого пара хладагента и остаются в резервуаре, стекая по его стенке, а затем выводясь наружу по специальному трубопроводу. Само отделение происходит за счет резкого изменения скорости и направления потока перегретого пара, который сначала поступает в нисходящую трубу отделителя жидкости, потом в нижней ее части меняет направление и выходит из резервуара через восходящую трубу. Когда уровень отделенных жидкостей, скопившихся на дне резервуара, достигает нижней части нисходящей трубы, то через расположенное там маленькое отверстие выводится из сепаратора благодаря перепаду давлений. Для отделения масла также имеются специальные резервуары – маслоотделители и маслосборники.
Цилиндрический сосуд отделителя жидкости может устанавливаться как вертикально, так и горизонтально. Иногда для увеличения скорости выпаривания жидкости в отделительный резервуар встраивается специальный теплообменник, но в таком случае велик шанс перегревания и разложения масла.
В каталоге комплектующих промышленного холодоснабжения, который представлен на сайте НПП «Холод», имеется широкий перечень промышленного холодильного оборудования от ведущих европейских и отечественных производителей. Приобретая через наше посредничество холодильную технику, вы получаете гарантированное качество и высокую надежность машин и комплектующих. Также специалисты НПП «Холод» оказывают полный набор услуг в сфере проектирования и модернизации, монтажа и наладки, обслуживания и ремонта промышленных холодильных систем. Важным преимуществом нашей компании является широкое внедрение современных методов снижения энергопотребления холодильных машин, например, использование рекуператоров или принципа фрикулинга, благодаря чему холодильные установки, организованные специалистами НПП «Холод», отличаются высокой эффективностью и малой ресурсоемкостью.
Принцип работы холодильной машины
Каков принцип действия холодильной машины , и какие процессы происходят во время её работы. Для конечного потребителя холодильного оборудования, человека, которому необходим искусственный холод на его предприятии, будь это хранение или заморозка продукции, кондиционирование помещения или охлаждение молока , воды и т.д., не обязательно детально знать и понимать теорию фазовых превращений в холодильном оборудовании. Но основные знания в этой сфере помогут ему в правильном выборе необходимого холодильного оборудования и поставщика.
Холодильная машина предназначена для забора тепла (энергии) от охлаждаемого тела. Но по закону сохранения энергии, тепло просто так никуда не исчезнет, следовательно, взятую энергию необходимо перенести (отдать).
Процесс охлаждения основан на физическом яв лении поглощения тепла при кипении (испарении) жидкости (жидкого хладагента). Компрессор холодильной машины предназначен для отсасывания газа из испарителя и сжатия, нагнетания его в конденсатор. При сжатии и нагревании паров хладагента мы сообщаем им энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого происходит перенос тепла и работает холодильная установка. В холодильном оборудовании для переноса тепла применяют хладагенты.
Холодильный компрессор 1 отсасывает газообразный хладагент (фреон) из испарителей (теплообменник или воздухоохладитель) 3, сжимает его и нагнетает в конденсатор 2 (воздушный или водяной). В конденсаторе 2 хладагент конденсируется (охлаждается потоком воздуха от вентилятора или потоком воды) и переходит в жидкое состояние. Из конденсатора 2 жидкий хладагент (фреон) попадает в ресивер 4, где происходит его накопление. Также ресивер необходим для постоянного поддержания необходимого уровня хладагента. Ресивер оснащен запорными вентилями 19 на входе и выходе. Из ресивера хладагент поступает в фильтр-осушитель 9, где происходит удаление остатков влаги, примесей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности 12, соленоидный вентиль 7 и дросселируется терморегулирующим вентилем 17 в испаритель 3.
Терморегулирующий вентиль применяется для регулирования подачи хладагента в испаритель
В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испарителя через фильтр на всасывающей магистрали 11, где происходит очистка их от загрязнений, и отделитель жидкости 5 поступают в компрессор 1. Затем цикл работы холодильной машины повторяется.
Отделитель жидкости 5 предотвращает попадание жидкого хладагента в компрессор.
Для обеспечения гарантированного возврата масла в картер компрессора на выходе из компрессора устанавливаться маслоотделитель 6. При этом масло через запорный вентиль 24, фильтр 10 и смотровое стекло 13 по линии возврата масла поступает в компрессор.
Виброизоляторы 25, 26 на всасывающей и нагнетательной магистралях обеспечивают гашение вибраций при работе компрессора и препятствуют их распространению по холодильному контуру.
Компрессор оснащён картерным нагревателем 21 и двумя запорными вентилями 20.
Картерный нагреватель 21 необходим для выпаривания хладагента из масла, предотвращения конденсации хладагента в картере компрессора во время его стоянки и поддержания необходимой температуры масла.
В холодильных машинах с полугерметичными поршневыми компрессорами, у которых в системе смазки используется масляный насос, применяется реле контроля давления масла 18. Это реле предназначено для аварийного отключения компрессора в случае снижения давления масла в системе смазки.
В случае установки агрегата на улице он должен быть дополнительно укомплектован гидравлическим регулятором давления конденсации, для обеспечения стабильной работы в зимних условиях и поддержания необходимого давления конденсации в холодное время года.
Реле высокого давления 14 управляют включением/выключением вентиляторов конденсатора, для поддержания необходимого давления конденсации.
Реле низкого давления 15 управляет включением/выключением компрессора.
Аварийное реле высокого и низкого давлений 16 предназначено для аварийного отключения компрессора в случае пониженного или повышенного давления.
Принцип работы холодильной машины
Жидкий фреон, являющийся в настоящее время основным хладагентом холодильной машины, находящийся в открытом сосуде при нормальном атмосферном давлении, немедленно вскипает. При этом происходит интенсивное поглощение тепла из окружающей среды, сосуд покрывается инеем из-за конденсации и замораживания паров воды из окружающего воздуха. Процесс кипения жидкого фреона будет продолжаться до тех пор, пока весь фреон не перейдет в газообразное состояние, либо давление над жидким фреоном не возрастет до определенного уровня и при этом не прекратится процесс испарения его из жидкой фазы.
Для того, чтобы процесс кипения хладагента в испарителе происходил непрерывно, необходимо постоянно из испарителя удалять газообразный и «подливать» жидкий хладагент.
Процесс конденсации паров жидкости происходит при температуре, зависящей от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Пары фреона R-22 конденсируются в жидкость при давлении 23 атмосферы уже при температуре +55°С. Процесс конденсации паров хладагента в жидкость сопровождается выделением в окружающую среду большого количества тепла. В холодильной машине конденсация паров хладагента происходит в специальном, герметичном теплообменнике, называемом конденсатором.
Для отвода выделяемого тепла используется алюминиевый теплообменник с оребренной поверхностью, называемый конденсатором. Для удаления паров хладагента из испарителя и создания необходимого для конденсации давления используется специальный насос — компрессор.
Элементом холодильной установки является также регулятор потока хладагента, так называемая дроссилирующая капиллярная трубка. Все элементы холодильной машины соединяются трубопроводом в последовательную цепь, обеспечивая тем самым замкнутую систему.
Устройство чиллера и схема работы
Широкий диапазон мощности дает возможность использовать чиллер для охлаждения в помещениях различных размеров: от квартир и частных домов до офисов и гипермаркетов. Кроме того, он применяется в пищевой промышленности для охлаждения воды и напитков, в спортивно-оздоровительной сфере – для охлаждения катков и ледовых площадок, в фармацевтике – для охлаждения медикаментов.
Существуют следующие основные типы чиллеров:
- моноблок, воздушный конденсатор, гидромодуль и компрессор находятся в одном корпусе;
- чиллер с выносным конденсатором на улицу (холодильный модуль располагается в помещении, а конденсатор выносится на улицу);
- чиллер с водяным конденсатором (используют когда нужны минимальные размеры холодильного модуля в помещении и нет возможности использовать выносной конденсатор);
- тепловой насос, с возможностью нагрева или охлаждения теплоносителя.
Выбор чиллера – это серьезный вопрос, который требует грамотного решения. Безусловно, для того чтобы подобрать холодильный агрегат, вам вовсе необязательно знать все нюансы работы холодильной машины, однако знание основных принципов поможет вам быстрее определиться с нужной моделью.
Подробнее о компонентах:
- Воздушный конденсатор
- Реле низкого и высокого давления
- Накопительная емкость
- Компрессор
- Манометры для воды
- ТРВ
- Насос
- Ресивер
- Фильтр-осушитель
- Пластинчатый теплообменник
- Реле протока
Существует несколько гидравлических схем работы чиллера: однонасосная схема (классическая), двухнасосная схема и охлаждение с промежуточным хладоносителем — пропиленгликолем. Другая техническая информация по чиллерам.
Принцип работы чиллера
Промышленный чиллер состоит из трех основных элементов: компрессора, конденсатора и испарителя. Основная задача испарителя – это отвод тепла от охлаждаемого объекта. С этой целью через него пропускаются вода и хладагент. Закипая, хладагент отбирает энергию у жидкости. В результате этого вода или любой другой теплоноситель охлаждаются, а холодильный агент – нагревается и переходит в газообразное состояние. После этого газообразный холодильный агент попадает в компрессор, где воздействует на обмотки электродвигателя компрессора, способствуя их охлаждению. Там же горячий пар сжимается, вновь нагреваясь до температуры в 80-90 ºС. Здесь же он смешивается с маслом от компрессора.
В нагретом состоянии фреон поступает в конденсатор, где разогретый холодильный агент охлаждается потоком холодного воздуха. Затем наступает завершающий цикл работы: хладагент из теплообменника попадает в переохладитель, где его температура снижается, в результате чего фреон переходит в жидкое состояние и подается в фильтр-осушитель. Там он избавляется от влаги. Следующим пунктом на пути движения хладагента является терморасширительный вентиль, в котором давление фреона понижается. После выхода из терморасширителя холодильный агенент представляет собой пар низкого давления в сочетании с жидкостью. Эта смесь подается в испаритель, где хладагент вновь закипает, превращаясь в пар и перегреваясь. Перегретый пар покидает испаритель, что является началом нового цикла.
Схема работы промышленного чиллера
# 1 Компрессор (Compressor)
Компрессор имеет две функции в холодильном цикле. Он сжимает и перемещает пары хладогента в чиллере. При сжатии паров происходит повышение давления и температуры. Далее сжатый газ поступает в воздушный конденсатор где он охлаждается и превращается в жидкость, затем жидкость поступает в испаритель (при этом её давление и температура снижается), где она кипит, переходит в состояние газа, тем самым забирая тепло от воды или жидкости, которая проходит через испаритель чиллера. После этого пары хладагента поступают снова в компрессор для повторения цикла.
# 2 Конденсатор воздушного охлаждения (Air-Cooled Condenser)
Конденсатор с воздушным охлаждением представляет собой теплообменник, где тепло, поглощаемое хладагентом, выделяется в окружающее пространство. В конденсатор обычно поступает сжатый газ — фреон, который охлаждаются до температуры насыщения и, конденсируясь, переходит в жидкую фазу. Центробежный или осевой вентилятор подают поток воздуха через конденсатор.
# 3 Реле высокого давления (High Pressure Limit)
Защищает систему от избыточного давления в контуре хладагента.
# 4 Манометр высокого давления (High Pressure Pressure Gauge)
Обеспечивает визуальную индикацию давления конденсации хладагента.
# 5 Жидкостной ресивер (Liquid Receiver)
Используется для хранения фреона в системе.
# 6 Фильтр-осушитель (Filter Drier)
Фильтр удаляет влагу, грязь, и другие инородные материалы из хладагента, который повредит холодильной системе и снизить эффективность.
# 7 Соленоиндный вентиль (Liquid Line Solenoid)
Соленоидный клапан — это просто электрически управляемый запорный кран. Он управляет потоком хладагента, который закрывается при остановке компрессора. Это предотвращает попадание жидккого хладагента в испаритель, что может вызвать гидроудар. Гидроудар может привести к серьезному повреждению компрессора. Клапан открывается, когда компрессор включен.
# 8 Смотровое стекло (Refrigerant Sight Glass)
Смотровое стекло помогает наблюдать поток жидкого хладагента. Пузырьки в потоке жидкости свидетельствуют о нехватке хладагента. Индикатор влажности обеспечивает предупреждение в том случае, если влага поступает в систему, указывая, что требуется техническое обслуживание. Зеленый индикатор не сигнализирует никакого содержания влаги. А желтые сигналы индикатора, что система загрязнена с влагой и требует технического обслуживания.
# 9 Терморегулирующий вентиль (Expansion Valve)
Терморегулирующий вентиль или ТРВ — это регулятор, положение регулирующего органа (иглы) которого обусловлено температурой в испарителе и задача которого заключается в регулировании количества хладагента, подаваемого в испаритель, в зависимости от перегрева паров хладагента на выходе из испарителя. Следовательно, в каждый момент времени он должен подавать в испаритель только такое количество хладагента, которое, с учетом текущих условий работы, может полностью испариться.
# 10 Горячий Перепускной клапан газа (Hot Gas Bypass Valve)
Hot Gas Bypass Valve (регуляторы производительности) используются для приведения производительности компрессора к фактической нагрузке на испаритель (устанавливаются в байпасную линию между сторонами низкого и высокого давления системы охлаждения). Перепускной клапан горячего газа (не входит в стандартную комплектацию чиллеров) предотвращает короткое циклирование компрессора путем модуляции мощности компрессора. При активации, клапан открывается и перепускает горячий газ холодильного агента с нагнетания в жидкостной поток хладагента, поступающего в испаритель. Это уменьшает эффективную пропускную способность системы.
# 11 Испаритель (Evaporator)
Испаритель это устройство, в котором жидкий хладагент кипит, поглощая тепло при испарении, у проходящего через него охлаждающей жидкости.
# 12 Манометр низкого давления фреона (Low Pressure Refrigerant Gauge)
Обеспечивает визуальную индикацию давления испарения хладагента.
# 13 Предельное Низкое давление хладагента (Low Refrigerant Pressure Limit)
Защищает систему от низкого давления в контуре хладагента, чтобы вода не замерзла в испарителе.
# 14 Насос охлаждающей жидкости (Coolant Pump)
Насос для циркуляции воды по охлаждаемому контуру
# 15 Ограничение температуры замерзания (Freezestat Limit)
Предотвращает замерзание жидкости в испарителе
# 16 Датчик температуры
Датчик, который показывает температуру воды в охлаждающем контуре
# 17 Хладагент манометр (Coolant Pressure Gauge)
Обеспечивает визуальную индикацию давления теплоносителя, подаваемого на оборудование.
# 18 Автоматический долив (Water Make-Up Solenoid)
Включается когда вода в емкости снижается ниже допустимого предела. Соленоидный клапан открывается и происходит долив в емкость от водопровода до нужного уровня. Далее клапан закрывается.
# 19 Резервуар Уровень поплавковый выключатель (Reservoir Level Float Switch)
Поплавковый выключатель. Открывается когда уровень воды в емкости снижается.
# 20 Датчик температуры 2 (From Process Sensor Probe)
Датчик температуры, который показывает температуру нагретой воды, которая возвращается от оборудования.
# 21 Реле протока (Evaporator Flow Switch)
Защищает испаритель от замерзания в нем воды (когда слишком низкий проток воды). Защищает насос от сухого хода. Сигнализирует отсутствие потока воды в чиллере.
# 22 Емкость (Reservoir)
Для избежания частых пусков компрессоров используют емкость увеличенного объема.
Чиллер с водяным охлаждением конденсатора отличается от воздушного — типом теплообменника (вместо трубчато-ребристого теплообменника с вентилятором используется кожухотрубный или пластинчатый, который охлаждается водой). Водяное охлаждение конденсатора осуществляется оборотной водой из сухого охладителя (сухой градирни, драйкулера) или градирни. В целях экономии воды предпочтительным является вариант с установкой сухой градирни с водяным замкнутым контуром. Основные преимущества чиллера с водяным конденсатором: компактность; возможность внутреннего размещения в маленьком помещении.
Вопросы и ответы
Можно ли чиллером охлаждать жидкость на проток более, чем на 5 градусов?
Чиллер можно использовать в замкнутой системе и поддерживать заданную температуру воды, например, 10 градусов, даже если возврат будет с температурой 40 градусов.
Есть чиллеры, которые охлаждают воду на проток. Это в основном используется для охдаждения и газирования напитков, лимонадов.
Что лучше чиллер или драйкулер?
Температура хладоносителя при использовании драйкулера зависит от температуры окружающей среды. Если, например, на улице будет +30, то хладоноситель будет с температурой +35…+40С. Драйкулер используют в основном в холодное время года для экономии электроэнергии. Чиллером можно получать заданную температуру в любое время года. Можно изготовить низкотемпературный чиллеры для получения температуры жидкости с отрицательной температурой до минус 70 С (хладоносителем при такой температуре является в основном спирт).
Какой чиллер лучше — с водяным или воздушным конденсатором?
Чиллер с водяным охлаждением имеет компактные размеры, поэтому могут размещаться в помещении и не выделяют тепло. Но для охлаждения конденсатора требуется холодная вода.
Чиллер с водяным конденсатором имеет более низкую стоимость, но может дополнительно потребоваться сухая градирня, если нет источника воды — водопровод или скважина.
В чем отличие чиллеров с тепловым насосом и без него?
Чиллер с тепловым насосом может работать на обогрев, т.е не только охлаждать хладоноситель, но и нагревать его. Необходимо учитывать, что с понижением температуры нагрев ухудшается. Наиболее эффективен нагрев когда температура опускается не ниже минус 5.
На какое расстояние можно выносить воздушный конденсатор?
Обычно конденсатор можно вынести на расстояние до 15 метров. При установке системы отделения масла выснок конденсатора возможен до 50 метров, при условии правильного подбора диаметра медных магистралей между чиллером и выносным конденсатором.
До какой минимальной температуре работает чиллер?
При установке системы зимнего пуска работа чиллера возможно до окружающей температуры минус 30…-40. А при установке вентиляторов арктического исполнения — до минус 55.
Виды и типы схем установок охлаждения жидкости (чиллеры)
1. Схема непосредственного охлаждения жидкости.
Применяется в случае, если перепад температур ∆Тж = (ТНж – ТКж ) ≤ 7ºС (охлаждение технической и минеральной воды)
2. Схема охлаждения жидкости с использованием промежуточного хладоносителя и вторичного теплообменного аппарата.
Применяется в случае, если перепад температур ∆Тж = (ТНж – ТКж ) > 7ºС или для охлаждения пищевых продуктов, т.е. охлаждение во вторичном разборном теплообменнике.
Для этой схемы необходимо правильно определить расход промежуточного хладоносителя:
G х – массовый расход промежуточного хладоносителя кг/ч
G ж – массовый расход охлаждаемой жидкости кг/ч
n – кратность циркуляции промежуточного хладоносителя
n =
где: C Рж – теплоёмкость охлаждаемой жидкости, кДж/(кг ´ К)
C Рх – теплоёмкость промежуточного хладоносителя, кДж/(кг ´ К)
∆Тх = (ТНх – ТКх ) – температурный перепад промежуточного хладоносителя в испарителе
∆Тх = 4…5ºС при температуре хладоносителя ТКх > 0 о С
∆Тх = 3…4ºС при температуре хладоносителя ТКх о С
Температуре хладоносителя принимается ТКх = ТКж – (3…6 о С)
3. Схема охлаждения жидкости с использованием ёмкости-накопителя
Применяется в случае наличия нескольких потребителей, подключенных к одной установке.
4.Схема охлаждения жидкости с использованием промежуточного хладоносителя и открытого вторичного теплообменного аппарата.
применяется для получения «ледяной» воды (ТВ = 0…1ºС) и охлаждения технических жидкостей. При получении «ледяной» воды эту схему возможно использовать в режиме аккумулятора холода. Холод аккумулируется в виде льда намороженного на теплообменной поверхности открытого теплообменного аппарата.
Принципиальные схемы промышленных чиллеров
Чиллер с конденсатором воздушного охлаждения и системой зимнего пуска
Состав
- Компрессор Danfoss
- Реле высокого давления КР
- Клапан запорный Rotolock
- Клапан дифференциальный NRD
- Регулятор давления конденсации KVR
- Конденсатор воздушного охлаждения
- Ресивер линейный
- Клапан запорный Rotolock
- Фильтр-осушитель DML
- Стекло смотровое SG
- Клапан соленоидный EVR
- Катушка для клапана соленоидного Danfoss
- Клапан терморегулирующий ТЕ
- Испаритель пластинчатый паяный тип В (Danfoss)
- Фильтр-осушитель DAS/DCR
- Реле низкого давления КР
- Клапан запорный Rotolock
- Датчик температуры AKS
- Реле протока жидкости FQS
- Щит электрический
- Чиллер с конденсатором воздушного охлаждения и системой зимнего пуска
- С выносным конденсатором воздушного охлаждения
- Многокомпрессорный с конденсатором воздушного охлаждения
- Многокомпрессорный с выносным конденсатором воздушного охлаждения
- С конденсатором водяного охлаждения и с регулированием давления конденсации
- Многокомпрессорный с конденсатором водяного охлаждения
Потеря силы напора с стальных трубах
Потеря силы напора в коленах, задвижках, донных и стопорных клапанах в см
Виды чиллеров
Методика подбора
- Водоохлаждающих установок — чиллеров, расчет по формулам
- Определение объёма буферного бака или вариант 2
- Определение объема помещения для размещения чиллера
- Выбор насоса для циркуляции
Для удобства расчетов ниже приведена таблица зависимости температуры замерзания от концентрации для наиболее часто применяемых хладоносителей.