Анализаторы отработавших газов бензиновых и газобензиновых двигателей (газоанализаторы)
Содержание токсичных компонентов в отработавших газах бензиновых двигателей в настоящее время определяется с помощью газоанализаторов, работающих на основе использования инфракрасного излучения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с определенной длиной волны. Так, например, оксид углерода поглощает инфракрасные лучи с длиной волны 4,7 мкм, углеводороды — 3,4, а диоксид углерода — 4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рисунке.
Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата и фильтры закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного
Рис. Схема газоанализатора: 1 — газоотборный зонд; 2 — отделитель конденсата; 3 — фильтр тонкой очистки; 4 — защитный фильтр; 5 — мембранный насос; 6 — источники инфракрасного излучения; 7 — синхронный электродвигатель; 8 — вращающийся диск обтюратора; 9 — сравнительная камера; 10 — лучеприемник инфракрасного излучения; 11 — усилитель; 12 — мембранный конденсатор; 13 — измерительная камера; 14 — индикаторные приборы
излучения являются нихромные нагреватели, которые нагреваются до температуры около 700 °С. Отражаясь от параболических зеркал, поток инфракрасного излучения, периодически прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере происходит поглощение инфракрасного излучения определенного компонента отработавших газов в зависимости от его концентрации. В сравнительной же камере этого не происходит, и возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора 12, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель 11 и далее на регистрирующий прибор.
По такому принципу работают газоанализаторы типа ГИАМ 27-01, ЕТТ фирмы «Бош» и др.
В более поздних конструкциях газоанализаторов, например АВГ-4, применяется метод измерения, частично отличающийся от рассмотренного выше. Анализируемый газ после очистки проходит через измерительную проточную кювету, где определяемые компоненты, взаимодействуя с излучением, вызывают его поглощение в соответствующих спектральных диапазонах (3,4; 3,9; 4,25 и 4,7 мкм). Инфракрасное излучение аналитических областей спектра определяемых компонентов, подаваемое излучателем, прерывается вращающимся диском обтюратора. Поток излучения характерных областей спектра выделяется приемниками излучения с интерференционными фильтрами и преобразуется в электрические сигналы, пропорциональные концентрации анализируемых компонентов.
Рис. Схема оптическая газоанализатора АВГ-4 (Россия): 1 — излучатель; 2 — кювета; 3 — обтюратор; 4 — приемники излучения с интерференционными фильтрами
Вместо четырех приемников может устанавливаться один (газоанализатор «Автотест»). Интерференционные фильтры в такой конструкции устанавливаются в самом обтюраторе. Инфракрасное излучение аналитических областей спектра определяемых компонентов, подаваемое от источника излучения и проходящее через линзу, поочередно выделяется соответствующими интерференционными фильтрами, установленными на вращающемся диске обтюратора. Этот диск вращается с шагом (углом поворота), равным каждому смонтированному в нем интерференционному фильтру. Кроме того, во вращающемся диске смонтирован «сравнительный» фильтр, которым ни один компонент отработавших газов не поглощается.
Рис. Функциональная схема газоанализатора «Автотест» (Россия): 1 — фотоприемник; 2 — проточная кювета; 3 — интерференционные фильтры; 4 — линза; 5 — источник излучения
В зависимости от концентрации определенного газа (углеводородов, диоксида и оксида углерода) на выходе пироэлектрического приемника формируются последовательные электрические импульсы, пропорциональные концентрации газа. Амплитуда сигналов дает информацию о концентрации определяемых компонентов отработавших газов. Анализ этих компонентов производится в режиме разделения (по очереди). Чем больше концентрация компонента в отработавших газах, тем меньше интенсивность излучения, принятая фотоприемником. Эта информация преобразуется и проходит статистическую обработку в микропроцессоре, а затем поступает на блок отображения информации.
Для исключения дополнительной погрешности от изменения температуры окружающего воздуха и анализируемого газа фотоприемник и кювета защищены теплоизоляционными оболочками и термостатируются системами стабилизации.
В современных многокомпонентных газоанализаторах типа «Автотест», «Инфакар М-1т.01UPEx» (Россия), MGT 5 фирмы МАХА (Германия) кроме измерения содержания оксида (ТО) и диоксида углерода (ТО2), углеводородов может определяться содержание кислорода (О2) и оксидов азота (NO), а также коэффициент избытка воздуха X. Однако молекулы газа с одинаковым количеством атомов не вызывают абсорбцию в инфракрасном диапазоне спектра, поэтому для измерения их концентрации метод инфракрасного излучения неприемлем.
Определение содержания NОж в газоанализаторах осуществляется химическим датчиком, посылающим электрический сигнал, который пропорционален содержанию измеряемых компонентов. Концентрация кислорода определяется электрохимическим методом. В датчике кислорода имеются измерительный и сравнительный электроды, находящиеся в электролите и отделенные от анализируемого газа полимерной мембраной. На измерительном электроде кислород, продиффундировавший через мембрану, электрохимически восстанавливается, и во внешней цепи возникает электрический ток, сила которого пропорциональна парциальному давлению кислорода в газе над мембраной.
Общая схема многокомпонентного газоанализатора показана на рисунке:
Рис. Схема многокомпонентного газоанализатора: 1 — зонд отбора проб отработавших газов; 2 — фильтры; 3 — отделитель конденсата; 4 — вход воздуха; 5 — фильтр с активированным углем; 6 — электромагнитный клапан; 7 — мембранный насос газа; 8 — мембранный насос конденсата; 9 — датчик давления; 10 — газоанализатор GA1 (измерительные камеры СО2, СО); 11 — газоанализатор GA2 (измерительная камера СН); 12 — датчик атмосферного давления; 13 — электрохимический датчик О2; 14 — химический датчик NО; 15 — выход газа; 16 — выход для слива конденсата
Измеряемые отработавшие газы отбираются из системы выпуска автомобиля с помощью зонда. Они закачиваются установленным в измерительном приборе мембранным насосом 7 и подаются через фильтр в отделитель конденсата. Здесь, прежде чем измеряемый газ очистится в следующем фильтре еще раз, отделяются грубые загрязнения и конденсат водяных паров. Второй мембранный насос (8) откачивает конденсат на выход для слива конденсата.
Сначала измеряемый газ проходит через газоанализатор GA1. Здесь определяется концентрация СО2 и СО. Затем газ направляется в газоанализатор GA2, который измеряет концентрацию СН. Прежде чем газ покинет измерительный прибор через выход 15, он проходит через датчики 13 и 14, которые измеряют содержание кислорода и оксида азота.
Когда происходит автоматическая установка прибора на «нуль» (так называемая «продувка»), вход измерительной камеры переключается электромагнитным клапаном 6, который установлен перед насосом, с отработавших газов на воздух.
Фильтр 5 с активированным углем защищает измерительный прибор от проникновения углеводородов, содержащихся в окружающем воздухе.
Датчик давления 9 служит для проверки плотности всего газового тракта. Второй датчик давления (12) регистрирует атмосферное давление, которое используется в расчетах.
Во многих странах нормируется коэффициент избытка воздуха X. Это безразмерная величина — отношение массы воздуха, поступающего в цилиндры двигателя при его работе, к массе воздуха, теоретически необходимого для полного сгорания горючей смеси. Этот коэффициент рассчитывается микропроцессором газоанализатора.
В зависимости от комплектации анализатор может также производить:
- определение частоты вращения коленчатого вала двигателя
- индикацию и вывод результатов измерений в виде протокола с указанием текущей даты и времени
- автоматическую коррекцию «нуля» при включении прибора и в дальнейшем по требованию без отключения пробозабор- ной системы от выхлопной трубы автомобиля
- измерения при отрицательных температурах окружающей среды (до -20 °С) при наличии дополнительной системы подогрева проб измеряемого отработавшего газа
Газоанализаторы могут выдавать информацию о проверяемых параметрах как непосредственно на переднюю панель прибора, так и на экран дисплея компьютера при комплексных проверках автомобилей. При использовании газоанализаторов на станциях гостехосмотра выходные значения измеряемых компонентов выводятся на экран дисплея и автоматически заносятся в диагностическую карту.
Рис. Экран дисплея с данными по составу отработавших газов бензинового двигателя
Газоанализатор может обмениваться данными с программным обеспечением диагностической линии и импортировать туда результаты измерений.
При определении концентрации токсичных компонентов отработавших газов необходимо определять частоту вращения коленчатого вала двигателя и температуру масла в его картере. В некоторых газоанализаторах, например MGT 5 фирмы МАХА, имеются разные способы считывания частоты вращения.
Заборное приспособление газоанализатора содержит гибкий зонд с зажимом для удерживания на срезе выхлопной трубы, предварительный фильтр и шланг достаточной длины для обеспечения доступа к выхлопной трубе.
В рукоятке зонда имеется заглушка, которая предназначена для закрытия зонда и применяется при периодическом контроле герметичности заборного приспособления.
Автомобильный справочник
для настоящих любителей техники
Приборы для измерения концентрации токсичных веществ в отработавших газах
Для проверки концентрации токсичности веществ в отработавших газах применяют многокомпонентные газоанализаторы, а для проверки дымности – дымомеры. Вот о том, какие используются приборы для измерения концентрации токсичных веществ в отработавших газах, мы и поговорим в этой статье.
Для автомобилей с бензиновыми двигателями, количество газообразных токсичных веществ в пробах вычисляется исходя из концентрации токсичных веществ в пробах отработавших газов и воздуха разбавления. Стандартная процедура для этой цели (см. табл. «Методики испытаний» ) определена нормами контроля токсичности отработавших газов.
В основном, для измерения концентраций газообразных токсичных веществ в отработавших газах автомобилей с бензиновыми и дизельными двигателями используется одни и те же измерительные приборы. Однако в отношении измерения концентрации углеводородов (НС) имеют место некоторые различия. Анализу подвергается не содержимое мешков для сбора проб, а часть непрерывного потока разбавленных отработавших газов. Затем к полученному значению прибавляется концентрация, измеренная в ходе дорожных испытаний. Причина такого подхода заключается в том, что углеводороды (имеющие высокую температуру кипения) конденсируются в (не нагретом) мешке для сбора проб отработавших газов.
В исследовательских целях на многих испытательных стендах установлены системы непрерывного измерения концентраций токсичных веществ в системе выпуска отработавших газов автомобиля или в системе разбавления отработавших газов. Это необходимо для получения данных о тех или иных подлежащих контролю компонентах, а также компонентах, на которые требования норм не распространяются. Для этого требуется использовать методы испытаний, не указанные в табл. «Методики испытаний» , например:
- Парамагнитный метод (для измерения концентрации O2);
- Детектор Cutter FID: комбинация пламенноионизационного детектора и поглотителя неметановых углеводородов (для измерения концентрации СН4);
- Массовая спектроскопия (многокомпонентный анализатор);
- FTIR-спектроскопия (инфракрасная спектроскопия с преобразованием Фурье, многокомпонентный анализатор);
- Инфракрасная лазерная спектроскопия (многокомпонентный анализатор).
Ниже приведены описания некоторых измерительных приборов.
NDIR-анализатор
NDIR-анализатор (недисперсионный инфракрасный анализатор) использует свойство некоторых газов поглощать инфракрасное излучение в узком диапазоне длин волн. Поглощенное излучение преобразуется в энергию колебаний или вращения молекул поглощающего вещества. В свою очередь эту энергию можно измерить, как тепловую энергию. Вышеописанное явление относится к веществам, молекулы которого состоят из атомов как минимум двух различных элементов, например, СО, СO2, С6Н14 или SO2.
Существует несколько вариантов NDIR- анализаторов; основными компонентами являются источник инфракрасного излучения (рис. «Измерительная камера анализатор NDIR» ), поглощающая ячейка (кювета), через которую проходит газ, эталонная ячейка, обычно расположенная параллельно поглощающей ячейке (заполненная инертным газом, например, N2), вращающийся прерыватель и детектор. Детектор состоит из двух камер, соединенных мембраной и содержащих образцы анализируемых газов. Излучение из эталонной ячейки поглощается в одной камере детектора, а из кюветы — в другой.
Интенсивность излучения из кюветы может быть снижена за счет поглощения испытуемым газом. Разность энергий излучения вызывает возникновение потока, который может быть измерен датчиком потока или датчиком давления. Вращающийся прерыватель прерывает инфракрасное излучение, что вызывает изменение направления потока и, следовательно, модуляцию сигнала датчика.
NDIR-анализаторы очень чувствительны к присутствию в анализируемом газе влаги, поскольку молекулы Н2O поглощают инфракрасное излучение в широком диапазоне длин волн. По этой причине NDIR-анализаторы располагаются после системы обработки газа (например, газоохладителя), служащей для осушения отработавших газов, если выполняются измерения неразбавленных отработавших газов.
Хемилюминесцентный детектор (CLD)
В реакционной камере испытуемый газ смешивается с озоном, производимым из кислорода посредством электрического разряда (рис. «Конструкция хемилюминесцентного детектора (CLD)» ). В этой среде оксид азота, содержащийся в испытуемом газе, окисляется до диоксида азота. Некоторые из вновь образовавшихся молекул находятся в возбужденном состоянии. Когда эти молекулы возвращаются в исходное состояние, происходит высвобождение энергии в виде света (хемилюминесценция). Величина излученной световой энергии измеряется детектором (например, фотоумножителем). При определенных условиях величина этой энергии пропорциональна концентрации оксида азота (NO) в испытуемом газе.
Поскольку стандарт устанавливает общее предельное содержание оксидов азота в отработавших газах, требуется определять количество молекул NO и NO2. Однако, т.к. принцип действия хемилюминесцентного детектора ограничивает область его применения измерением только концентрации NO, испытуемый газ пропускается через преобразователь, в котором диоксид азота восстанавливается до оксида азота.
Пламенно-ионизационный детектор (FID)
Испытуемый газ сжигается в пламени водорода (см. рис. «Конструкция пламенно-ионизационного детектора (FID)» ), в результате чего образуются углеродные радикалы, некоторые из которых временно ионизируются. Ионизированные радикалы разряжаются на электроде коллектора. Величина возникающего при этом электрического тока пропорциональна количеству атомов углерода в испытуемом газе.
Детекторы GC FID и Cutter FID
Существуют два основных метода измерения концентрации метана в испытуемом газе Оба метода включают использование комбинации сепаратора метана (СН4) и пламене-ионизационного детектора. Для сепарирования метана используется хроматографическая колонка (GC FID), или нагреваемый каталитический нейтрализатор, окисляющий отличные от метана углеводороды.
В отличие от детектора cutter FID, детектор GC FID может определять концентрацию СН4 только в прерывистом режиме (типичные интервалы между измерениями составляют от 30 до 45 секунд).
Парамагнитный детектор (PMD)
Существуют различные конструкции парамагнитных детекторов (в зависимости от изготовителя). Принцип действия этих детекторов заключается в том, что в неоднородных магнитных полях вещества с парамагнитными свойствами (такого как кислород) воздействуют на молекулы. Возникающие при этом силы вызывают движение молекул. Это движение регистрируется специальным детектором и его интенсивность пропорциональна концентрации молекул в испытуемом газе.
Измерение содержания твердых частиц
Кроме измерения концентрации газообразных токсичных веществ, измеряется содержание в отработавших газах твердых частиц, поскольку они также являются загрязняющими агентами, содержание которых ограничивается нормами. В настоящее время законодательство предписывает использование для измерения содержания твердых частиц гравиметрического метода.
Гравиметрический метод (с использованием фильтра твердых частиц)
Часть разбавленных отработавших газов отбирается из канала разбавления во время дорожных испытаний и пропускается через фильтры твердых частиц. Количество твердых частиц в отработавших газах (нагрузка фильтров) вычисляется, как разность весов фильтров твердых частиц до испытания и после него. Затем содержание твердых частиц, произведенных во время испытания, вычисляется, исходя из нагрузки фильтров, общего объема разбавленных отработавших газов и частичного объема отработавших газов, прошедших через фильтры твердых частиц.
Гравиметрический метод имеет следующие недостатки:
- Относительно высокий предел детектирования, который можно только в ограниченной степени снизить, при помощи сложных измерительных приборов, а также путем оптимизации геометрии канала;
- Невозможность непрерывного измерения содержания твердых частиц;
- Необходимость в сложном кондиционировании фильтров твердых частиц с целью сведения к минимуму влияния окружающей среды;
- Невозможность определения химического состава и размеров твердых частиц.
Подсчет количества твердых частиц
В связи с вышеуказанными недостатками гравиметрического метода и с целью снижения предельных значений, некоторые законодатели в будущем также ограничат не только массу, но и количество твердых частиц.
В качестве устройства для подсчета количества твердых частиц в соответствии со стандартом был заявлен «Конденсационный счетчик твердых частиц» (СРС). В этом счетчике небольшая часть потока разбавленных отработавших газов (аэрозоль) смешивается с насыщенными парами бутанола. Конденсация паров бутанола на твердых частицах вызывает значительное увеличение размера частиц, что дает возможность подсчитать их количество в рассеянном свете.
Количество твердых частиц в разбавленных отработавших газах определяется непрерывно. Интегрирование измеренных значений позволяет получить количество твердых частиц, произведенных во время испытаний.
Определение распределения твердых частиц по размеру
В настоящее время возрастает интерес к распределению твердых частиц, содержащихся в отработавших газах по размеру. Примерами устройств, позволяющих получать такие данные, являются:
- Сканирующий мобильный определитель размеров частиц (SMPS);
- Электрический импактор низкого давления (ELPI);
- Дифференциальный мобильный спектрометр (DMS).
Испытания грузовых автомобилей
Измерения количества выбросов дизельных двигателей большегрузных грузовых автомобилей массой свыше 8500 фунтов, требуемые в США, начиная с 1986 модельного года, и в Европе, с вступлением силу норм Евро-4 для автомобилей массой свыше 3,5 т производится на динамических испытательных стендах с использованием метода CVS (отбор проб при постоянном объеме). Однако, в связи с большими размерами двигателей, для обеспечения такой же степени разбавления отработавших газов, как для легковых и малотоннажных грузовых автомобилей, требуется значительно более высокая производительность вентиляторов. Двойное разбавление (через вторичный канал), одобренное законодателем, помогает в некоторой степени решить эту проблему.
Требуемый объемный расход разбавленных отработавших газов в критических условиях может быть обеспечен при помощи воздуходувки Рутса или трубки Вентури. Другой возможностью является определение содержания твердых частиц в частичном потоке разбавленных отработавших газов (при условии измерения концентраций остальных токсичных веществ в необработанных отработавших газах).
Также ожидается, что с введением следующих, более строгих норм (например, Евро-6), для большегрузных грузовых автомобилей будут также установлены предельно допустимые значения количества твердых частиц.