Конструкция электрических машин
Большинство электрических машин построено на принципе вращательного движения их подвижной части. Несмотря на большое разнообразие конструкций электрических машин, оказывается возможным представить себе некоторую обобщенную конструкцию электрической машины. Такая конструкция (рис. В.З) состоит из неподвижной части 1, называемой статором, и вращающейся части 2, называемой ротором. Ротор располагается в расточке статора и отделен от него воздушным зазором. Одна из указанных частей машины снабжена элементами, возбуждающими в машине магнитное поле (например, электромагнит или постоянный магнит), а другая — имеет обмотку, которую будем условно называть рабочей обмоткой машины. Как неподвижная часть машины (статор), так и подвижная (ротор) имеют сердечники, выполненные из магнитно-мягкого материала и обладающие небольшим магнитным сопротивлением.
Рис. В.З. Обобщенная конструктивная схема электрической машины
Если электрическая машина работает в режиме генератора, то при вращении ротора (под действием приводного двигателя) в проводниках рабочей обмотки наводится ЭДС и при подключении потребителя появляется электрический ток. При этом механическая энергия приводного двигателя преобразуется в электрическую. Если машина предназначена для работы в качестве электродвигателя, то рабочая обмотка машины подключается к сети. При этом ток, возникший в проводниках обмотки, взаимодействует с магнитным полем и на роторе возникают электромагнитные силы, приводящие ротор во вращение. При этом электрическая энергия, потребляемая двигателем из сети, преобразуется в механическую энергию, затрачиваемую на вращение какого-либо механизма, станка и т. п.
Возможны также конструкции электрических машин, у которых рабочая обмотка расположена на статоре, а элементы, возбуждающие магнитное поле, — на роторе. Принцип работы машины при этом остается прежним.
Диапазон мощностей электрических машин весьма широк — от долей ватт до сотен тысяч киловатт.
Страница обновлена: 05.02.2018
Отзывы и пожелания можно направлять по адресу energ2010@yandex.ru
Информация предоставлена для ознакомления и не является официальным источником.
Принцип работы электрических машин
Классификация электрических машин
Классифицируют электрические машины по назначению, принципу действия и роду тока, мощности, по частоте вращения.
Классификация по назначению
Электрические машины по своему назначению подразделяют на:
- Электромашинные генераторы. Они выполняют преобразовании энергии механической (вращение) в электрическую. Они устанавливаются на электрических станциях, автомобилях, самолетах, тепловозах, передвижных электростанциях, кораблях и в других установках. На электростанциях генератор приводят в движение мощные паровые турбины, на автомобилях, тепловозах и прочих транспортных средствах – газовые турбины или двигатели внутреннего сгорания. Генераторы очень часто используют в качестве источников питания в различных установках связи, автоматики и измерительной техники и в других системах.
- Электрические двигатели – выполняют функции обратные генератору, а именно, преобразуют электрическую энергию в механическую. Они используются для приведения в движение множества установок в промышленности, сельском хозяйстве, транспорте, в быту, в системах связи. В системах автоматического регулирования их активно используют в качестве регулирующих, программирующих и исполнительных органов.
- Электромашинные преобразователи – выполняют преобразования электрических величин. Например, могут преобразовывать постоянный ток в переменный и наоборот, изменять частоту, число фаз и другие функции. В связи с активным внедрением полупроводниковых преобразователей электромашинные преобразователи в новых проектах используют крайне редко (практически никогда), а уже установленные электромашинные преобразователи активно модернизируются полупроводниковыми (тиристорными и транзисторными).
- Электромашинные компенсаторы – осуществляют регулирование коэффициента мощности cos φ, а именно баланса реактивной мощности в сети.
- Электромашинные усилители – используют для объектов большой мощности. Это, своего рода усилители, они усиливают сигналы большой мощности, при этом управление ведется сигналами малой мощности. Роль этих усилителей, как и электромашинных компенсаторов, в современном мире практически сведена на нет из – за применения полупроводниковых усилителей (транзисторных и тиристорных).
- Электромеханические преобразователи сигналов – это, как правило, электрические микромашины (например, сельсины), которые довольно широко используют в системах автоматического управления.
Классификация по роду тока и принципу действия
Как известно, существует два рода электрического тока – переменный и постоянный.
Исходя из этого, электрические машины также подразделяют по роду тока на два вида – машины электрические переменного тока и машины электрические постоянного тока.
Электрические машины переменного тока
- Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).
- Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Применяются в промышленных электроустановках (станки, краны, подъемные машины) и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.
- Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ.
- Коллекторные машины – используют их только в качестве электродвигателей. Это вызвано сложностью их конструкции и необходимостью тщательного ухода. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.
Электрические машины постоянного тока
Они работают практически во всех сферах промышленности и транспорта.
В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.
Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.
Электрические микромашины
Микромашины активно применяются в устройствах автоматических.
Их подразделяют на группы:
- Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.
- Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
- Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
- Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
- Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
- Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
- Электромашинные усилители и преобразователи.
Классификация по мощности
- Микромашины – их мощность может варьироваться от нескольких долей ватта до 500 Вт. Они могут производится для двух родов тока — постоянного и переменного. Могут быть рассчитаны как на работу при нормальной (промышленной) частоте 50 Гц, так и при повышенной ( от 400 до 2000 Гц).
- Электродвигатели малой мощности – от 0,5 до 10 кВт. Также могут изготавливаться для двух родов тока – постоянного и переменного нормальной и повышенной частоты.
- Электродвигатели средней мощности – от 10 кВт до нескольких сотен ватт.
- Электродвигатели большой мощности – мощность данных машин больше нескольких сотен киловатт. Такие электродвигатели предназначены для работы на постоянном и переменном напряжении нормальной частоты. Исключение могут составлять электродвигатели специального назначения (авиация, флот) и другие.
Классификация по частоте вращения
- До 300 об/мин — тихоходные.
- От 300 до 1500 об/мин — средней быстроходности.
- От 1500 до 6000 об/мин — быстроходные.
- Более 6000 об/мин — сверхбыстроходные.
Микромашины же могут изготавливать с частотой вращения вала от нескольких оборотов в минуту до 60 000 оборотов в минуту. Скорость вращения машин средней и большой мощности, как правило, не превышает 3000 об/мин.
Устройство и принцип работы электромобиля. Плюсы и минусы электрокаров
Устройство электромобиля и принцип его работы
Принцип работы электромобиля заключается в следующем. В нем задействован механизм электромагнитной индукции, который состоит в том, что при наличии переменного электрического тока в проводнике возникает магнитное поле, которое по закону Ампера выполняет отклоняющее действие.
В моторе существуют два основных компонента: ротор и статор.
Статор остается постоянно неподвижным и по нему пропускается электрический ток определенной частоты.
Генерируемое в статоре магнитное поле действует на ротор и тот начинает вращаться. Получаемая механическая энергия используется для движения транспортного средства. Скорость движка прямо пропорциональна частоте тока и количеству установленных магнитных полюсов.
Ток для питания статора генерируется установленными на борту батареями. В зависимости от модели машины, батареи могут иметь разную емкость, конструкцию, особенности используемых механизмов работы.
Типы устройств электромобиля
Выделяют такие машины на электричестве:
- Внутригородские. Имеют невысокую мощность и скорость передвижения, на них установлены специальные ограничения по максимальной мощности. Небольшого диаметра колеса и малый вес позволяют двигаться в нормальном городском режиме;
- Микроэлектромобили. Созданы с учетом плотного городского транспортного потока, имеют батарею небольшой емкости. Используются для небольших переездов, поездок в магазин, на работу и назад и т.п.;
- Различные креативные варианты, типа трициклы;
- Обычные авто. Привычные легковушки, типа некоторых популярных моделей от Tesla;
- Грузовые. Пока еще не слишком распространены, но в перспективе могут использоваться в крупных городах для внутренних перевозок и уменьшения выбросов в атмосферу;
- Троллейбусы, трамваи, автобусы на электродвижках также являются довольно популярным видом транспорта в любом крупном городе.
Плюсы и минусы электрокаров
- Минимальные расходы на заправку.
- Простота сервисного обслуживания.
- Тихая работа мотора.
- Отсутствие опасных выхлопных газов.
- Покупка на перспективу.
- Небольшой выбор авто и высокая цена.
- Ограниченное количество необходимых заправок.
- Высокая цена на батареи.
- Ограниченность использования электроники, например, кондиционера, который будет быстро поглощать имеющийся заряд АКБ.
Устройство и принцип работы электромобиля. Плюсы и минусы электрокаров
Многие неискушенные граждане считают, что электромобили появились совсем недавно, максимум 10-20 лет назад.
Но это очень далеко от истины. Как только человечество изобрело электричество, сразу же нашлись прогрессивные инженеры и механики, которые пытались применить его для задачи создания экономичного и быстрого транспорта. Устройство электромобиля еще не было представлено на обозрение широкой публики, но уже вынашивалось в головах механиков и ученых.
Первые воспоминания о машине, движущейся благодаря электрическому двигателю, идут из 1841 года. Это была не машина в полном смысле этого слова, а тележка с электромотором. Она не получила широкой популярности и распространения, но энтузиасты продолжили работы по совершенствованию конструкции.
В 1899 году русский инженер Ипполит Романов разработал электромобиль, который мог проехать без подзарядки почти 60 километров, при этом борт машины был рассчитан на 17 пассажиров. Его скорость достигала 40 км/час.
Многие успешные попытки создания таких авто предпринимались в Европе, Америке, Японии после 2-й Мировой войны. К примеру, в США отличилась компания General Motors, которая начала выпускать серийные модели EV1. В последние годы на весь мир гремит компания Tesla, которая смогла возвести электромобили из сферы неинтересной экзотики в ранг стильных и желаемых транспортных средств.
Устройство электромобиля и принцип его работы
Устройство электромобиля не содержит в себе никаких тайн и сложностей, так как основывается на общеизвестных физических и технических принципах. В целом, конструкция такой машины в области ходовой части, кузова, управления может совсем не отличаться от классического транспорта. Главное отличие состоит именно в моторе, который работает не на жидком дизельном топливе или бензине, а на генерируемом электрическом токе.
Принцип работы электромобиля заключается в следующем. В нем задействован механизм электромагнитной индукции, который состоит в том, что при наличии переменного электрического тока в проводнике возникает магнитное поле, которое по закону Ампера выполняет отклоняющее действие. В моторе существуют два основных компонента: ротор и статор. Статор остается постоянно неподвижным и по нему пропускается электрический ток определенной частоты. Генерируемое в статоре магнитное поле действует на ротор и тот начинает вращаться. Получаемая механическая энергия используется для движения транспортного средства. Скорость движка прямо пропорциональна частоте тока и количеству установленных магнитных полюсов.
В целом, устройство электромобиля достаточно простое, но требует очень аккуратного и точного исполнения. Ток для питания статора генерируется установленными на борту батареями. В зависимости от модели машины, батареи могут иметь разную емкость, конструкцию, особенности используемых механизмов работы.
Интересный факт! Многие перспективные разработки старины отвергались обществом или просто не были замечены.
Типы устройств электромобиля
В зависимости от того, как устроен электромобиль и для каких задач он разработан, можно провести некоторую классификацию этих ТС. Она довольно условна и обращает внимание более на особенности эксплуатации, так как по конструкции все разработки повторяют друг друга.
Выделяют такие машины на электричестве:
- Внутригородские. Имеют невысокую мощность и скорость передвижения, на них установлены специальные ограничения по максимальной мощности. Небольшого диаметра колеса и малый вес позволяют двигаться в нормальном городском режиме;
- Микроэлектромобили. Созданы с учетом плотного городского транспортного потока, имеют батарею небольшой емкости. Используются для небольших переездов, поездок в магазин, на работу и назад и т.п.;
- Различные креативные варианты, типа трициклы;
- Обычные авто. Привычные легковушки, типа некоторых популярных моделей от Tesla;
- Грузовые. Пока еще не слишком распространены, но в перспективе могут использоваться в крупных городах для внутренних перевозок и уменьшения выбросов в атмосферу;
- Троллейбусы, трамваи, автобусы на электродвижках также являются довольно популярным видом транспорта в любом крупном городе.
Также стоит упомянуть гибриды – транспорт, на котором установлен как электрический, так и бензиновый двигатель. Подобные ТС очень популярны во всем мире, в частности, в Японии, США, Европе. Напряжение электромобиля во всех рассмотренных случаях разное, так как в них требуется неодинаковая рабочая мощность силового агрегата.
Особенности устройства электромобиля-гибрида
Гибриды получили широкое распространение и популярность в силу своей универсальности и удобства использования практически в любых условиях. Высокий уровень экономии, отличные рабочие характеристики, совмещение лучших свойств агрегатов на жидком топливе и токе делают гибриды популярными не только среди индивидуальных покупателей, но и среди госслужащих, полицейских и т.д. После длительного простоя такое авто не нужно «прогревать» и терять время. Достаточно использовать электродвигатель и буквально мгновенно тронуться в путь. Когда же требуется большая скорость, мощность и дополнительный ресурс на расстояние передвижения, то мгновенно происходит переключение на бензин или дизель.
Существуют различные схемы реализации гибридов, но наиболее популярной является вариант от компании «Honda», в котором оба движка работают в параллельном режиме. При необходимости любой из них может включаться или выключаться без каких-либо сложностей. Работа электромобиля в этом случае отличается надежностью, безопасностью и высокой эффективностью.
Интересный факт! Преимущества гибридов отлично подходят для патрулей ДПС, поэтому в этой структуре их используют повсеместно по всему миру.
Плюсы и минусы электрокаров
Многих людей, которые колеблются в выборе транспортного средства для личного использования, волнует вопрос: какие существуют плюсы и минусы электромобилей и стоит ли сейчас рассматривать их как серьезный вариант для покупки.
Плюсы электромобилей выглядят следующим образом:
- Самое существенное – минимальные расходы на заправку. Благо, электричество в нашей стране имеет достаточно низкую стоимость и полная зарядка для того, чтобы проехать 100 км, будет стоить около 15-20 рублей. В то же время с бензином ситуация будет более печальной (см. Самый дорогой и самый дешевый бензин в регионах России);
- Простота сервисного обслуживания. Не нужно покупать и менять никаких свечей зажигания, масла, фильтров, других расходных материалов. Нет необходимости регулярно посещать сервис и тратиться на него;
- Тихая работа мотора также многими относится в плюсы. Работающего агрегата практически не слышно во время езды, достаточно вспомнить движение на новеньком троллейбусе;
- Отсутствие опасных выхлопных газов, которые отравляют городской воздух;
- Покупка на перспективу. По всей видимости в ближайшие годы или десятилетие человечество массово пересядет на электрические машины. Покупая ее сейчас, Вы становитесь во главе этого процесса.
Что касается негативных моментов, то они также есть и выглядят так:
- Небольшой выбор авто и дороговизна. Цена, которую просят за средненькую Теслу, вполне сопоставима со стоимостью хорошего Мерседеса последних лет выпуска. Поэтому многие предпочитают второй вариант;
- Ограниченное количество необходимых заправок. Даже в столице страны ее очень мало мест, где можно зарядить машину. Поэтому придется тщательно следить, чтобы заряда хватало на запланированные дневные расстояния;
- Минус электрокаров еще и в том, что батареи на них стоят очень дорого, поэтому их нужно беречь. Также в салоне нельзя будет полноценно использовать всю электронику, к примеру, кондиционер, так как это будет быстро поглощать имеющийся заряд АКБ.
Это главное, что стоит учитывать человеку, выбирающему транспортное средство.
Покупка и нюансы работы электромобиля: перспективы
После того, как мы увидели плюсы и минусы электрокаров, стоит обратить внимание на перспективы этого типа транспорта. Стоит ли покупать данный вид ТС, тратить немалые деньги и будет ли это правильным шагом? Ответ здесь не так однозначен.
Если Вы хотите просто хорошую проверенную машину для решения повседневных задач, развитую систему сервиса и ремонта, предсказуемые проблемы и их легкое решение – то лучше всего покупать классический бензиновый или дизельный агрегат. Это все еще актуально и несет в себе только преимущества.
Если Вы относитесь к смелым людям, которые пытаются идти в ногу со временем и смотрят наперед, то такая покупка будет оправданной, хотя нужно быть готовым к некоторым упомянутым выше минусам и неудобствам.
Что касается перспектив рассматриваемого транспорта, то они очень большие. Ожидается, что в ближайшие 10 лет человечество массово пересядет именно на электрокары.
Масштабы распространения
За последние несколько лет рынок электрических машин расширился и распространился на все развитые страны мира. Если еще недавно подобная покупка была экстравагантным шагом для любителей нового и необычного, то сегодня это уже проверенный и выгодный шаг для комфортной езды и экономии средств.
По имеющейся статистике, в 2017 году рынок рассматриваемых авто вырос сразу на 60%! На данный момент динамика сохраняется и в перспективе этот процесс станет еще более массовым. По всему миру в 2017 было продано около 750 000 новых авто, из них на гибриды приходится примерно 290 000. Все крупные концерны, видя такие тенденции рынка, активно начали разрабатывать свои варианты и представлять их на автовыставке по всему миру. Свои творения уже показали Мерседес, Фольксваген, Порше, Астон Мартин и многие другие производители. В России также наблюдается повышенный интерес к этой тематике.
Интересный факт! На постсоветском пространстве по отношению к машинам заметен некоторый консерватизм и популярность бензина и дизеля здесь не спадает.
Цены на нефть и популярность электрокаров
Сами по себе цены на нефтепродукты и нефть практически никак не влияют на популярность автомобилей на электрических двигателях. Но вот распространение последних очень сильно может повлиять на стоимость нефти, так как она станет менее востребованной на рынке. Существует даже конспирологическая теория о том, что крупные нефтяные корпорации сдерживают развитие других источников энергии, чтобы не потерять монополию на рынке и свои сверхдоходы.
На данный момент количество машин на токе никак не влияет на цену нефти, поэтому говорить о каких-либо опасностях для этого традиционного источника энергии пока очень рано.
Как устроен электромобиль, созданный Илоном Маском
Нашумевший предприниматель миллиардер из США, родом из ЮАР, по имени Элон Маск произвел настоящую революцию в мире электромобилей. Он один из первых в новейшее время решил поставить процесс производства этого транспорта на поток и сделать их частью повседневной реальности. Такие начинания не остались без внимания, поэтому имя этого человека стало известно на весь мир.
Как работает электромобиль Tesla? Все так же, как и любые другие подобные продукты. Устройство электромобиля следующее: кузов здесь практически целиком повторяет таковой в Мерседесах бизнес класса. Батарея и двигатель разработан для максимально эффективной, экономичной и длительной работы. Минусом ТС от Tesla сегодня считается слишком слабо развитая сервисная система, которая часто бросает владельца такой дорогой машины на произвол судьбы с его проблемами.
Как выбрать машину и особенности ее сервиса
Устройство электромобиля обязательно должен хоть в общих чертах знать каждый человек, который собирается его приобретать. Чтобы купить хорошее ТС, нужно следовать таким советам:
- Самое первое – запас хода от полностью заряженных АКБ. Для бюджетных моделей запас хода составляет около 150 км;
- Особенности механики. Ходовая часть, трансмиссия, подвеска и прочие элементы должны быть в полном порядке и состоять их надежных комплектующих. При покупке лучше привлечь на помощь человека, который хорошо понимает устройство электромобиля;
- Цена. Не стоит переплачивать, так как за большие деньги можно взять и шикарный бензиновый или дизельный вариант.
Что касается сервиса, то здесь не должно быть никаких проблем. Электродвигатели хорошо известны любому инженеру и механику, вся остальная часть авто полностью повторяет конструкцию классического транспортного средства. Единственный совет по сервису – стоит обращаться в продвинутые СТО, в которых способны проводить точную диагностику.