Меню

Основные части двигателя электромагнита

Электромагниты и их применение

Электромагнит создает магнитное поле с помощью обмотки, обтекаемой электрическим током. Для того чтобы усилить это поле и направить магнитный поток по определенному пути, в большинстве электромагнитов имеется магнитопровод, выполняемый из магнитномягкой стали.

Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах — электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи — телефония, телеграфия и радио немыслимы без их применения.

Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.

Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность — от милливатт до десятков тысяч киловатт.

Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы.

Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п.

В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.).

Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.

В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.

В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.

Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке.

Электромагниты переменного тока

В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.

Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).

Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.

В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.

Обмотки последовательного включения , работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных .последовательно с обмоткой.

Обмотки параллельного включения , работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения.

По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.

По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.

Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.

Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т. д.). а)

Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.

Читайте также:  Показать диски для автомобиля

Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются-паразитными.

Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.

В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.

Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника. Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.

Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы. Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.

Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.

Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.

В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.

В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.

Основные части электромагнитов постоянного тока.

Нейтральные электромагниты постоянного тока обладают наиболее благоприятными характеристиками и наиболее экономичны. Благодаря большому количеству возможных конструктивных исполнений эти электромагниты легко приспосабливать к различным условиям работы и различным конструкциям устройств, в которых они используются. Поэтому они получили наибольшее распространение.

При всем разнообразии встречающихся на практике таких электромагнитов они имеют следующие основные части одинакового назначения (рис. 2.1 — 2.3):

Ø катушку с расположенной на ней намагничивающей обмоткой 1;

Ø неподвижную часть магнитопровода из ферромагнитного материала 2;

Ø подвижную часть магнитопровода — якорь 3.

Якорь отделяется от остальных частей магнитопровода рабочим и паразитным зазорами и представляет собой часть электромагнита, которая, воспринимая электромаг-нитное усилие, передает его соответствующим деталям приводимого в действие механизма.

В зависимости от расположения якоря относительно остальных частей электромагнита и характера воздействия на якорь со стороны магнитного потока электромагниты постоянного тока рзделяются на следующие типы:

¨ электромагниты со втягивающимся якорем;

¨ электромагниты с внешним притягивающимся якорем;

¨ электромагниты с внешним поперечно движущимся якорем.

Одна из типичных конструкций электромагнита с втягивающимся якорем показана на рисунок 10.1. Характерной особенностью таких электромагнитов

является то, что якорь или,

Рисунок 10.1. Электромагнит с втягивающимся якорем.

как его в данном случае можно назвать, подвижный сердечник, располагается целиком или частично внутри катушки с обмоткой. В процессе срабатывания электромагнита якорь, перемещаясь поступательно, погружается в катушку. Втягивание якоря происходит как за счет магнитного потока, проходящего через торцовую поверхность якоря, так и за счет действия магнитных потоков, выходящих из его боковой поверхности. На рисунок 10.2 изображена одна из разновидностей электромагнитов с внешним

Рисунок 10.2. Электромагнит с внешним притягивающимся якорем. а — внешний вид реле с электромагнитом с притягивающимся якорем;

б — разрез электромагнита. притягивающимся якорем.

У этих электромагнитов якорь расположен снаружи по отношению к катушке. На него действует главным образом рабочий магнитный поток, проходящий от якоря к торцу шляпки сердечника. В результате этого якорь поворачивается в пределах малого угла или совершает поступательное перемещение в направлении линии индукции рабочего магнитного потока.

Конструкция электромагнита с внешним поперечно движущимся якорем показана на рис. 10.3.

Рисунок 10.3. Электромагнит с внешним поперечно движужимся якорем.

Якорь в подобных электромагнитах располагается снаружи катушки. Рабочий магнитный поток, действующий на якорь, проходит из его боковой поверхности к полюсным наконечникам, имеющим особую форму, определенным об- разом согласованную с формой боковой поверхности якоря. В результате воздействия со стороны рабочего магнитного потока якорь движется поперек магнитных линий, поворачиваясь на некоторый ограниченный угол.

В каждой из трех перечисленных групп электромагнитов потоянного тока в свою очередь имеется ряд конструктивных разновидностей, определяемых конструкцией магнитной цепи. Кроме того, в зависимости от способа включения обмотки электромагнита различают:

Читайте также:  Дым машина antari f 80z дым машина antari f 80z

¨ электромагниты с оботками параллельного включения;

¨ электромагниты с обмотками поледовательного включения.

В первом случае обмотка выолняется таким образом, что ее включают на полное наряжение источника питания непосредственно или через неоторое добавочное сопротивление. Ток в цепи обмотки параллельного включения полностью или, во всяком случае в значительной степени определяется ее параметрами. Обмотка последовательного включения практически не влияет на величину тока той цепи, куда она включается. Последний определяется параметрами остальных элементов этой цепи. Благодаря этим особенностям некоторые характеристики электромагнитов параллельного и последовательного включения и в первую очередь их динамические характеристики оказываются различными.

б) Основные части электромагнитов переменного тока.

Характеристики и конструкция таких электромагнитов имеют коренные отличия по сравнению с электромагнитами постоянного тока,

Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически меняется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоен- ной частотой по отношению к частоте питающего тока’.

Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как приводит к вибрации якоря, а в отдельных случаях — к прямому нарушению нормальной работы.

Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к специальным мерам для уменьшения глубины пульсации силы.

Основным способом уменьшения пульсации суммарной силы, действующей на якорь электромагнита с переменным магнитным потоком, является применение магнитных систем с расщепленными путями магнитного по- тока, по каждому из которых проходят переменные магнитные потоки, сдвинутые по фазе относительно друг друга.

Пpи всем разнообразии встречающихся на практике тяговых электромагнитов они состоят из следующих основных частей одинакового назначения (рис. 10-4).

1 — катушка с расположенной на ней намагничиваю- щей обмоткой (может быть несколько катушек и несколько обмоток);

2 — неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (основание и сердечник);

3 — подвижная часть магнитопровода (якорь).

Рисунок 10.4: а) эскиз электромагнита с внешним б) эскиз электромагнита с притягивающимся якорем. в) втягивающимся частично якорем

Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.

Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилие в направлении возможного перемещения якоря, являются паразитными.

Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.

В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты

¨ с внешним притягивающимся якорем (рисунок 10.5 а),

¨ электромагниты с втягивающимся якорем (рисунок 10.4 б)

¨ электромагниты с поперечно движущимся якорем.

Последняя система в электромагнитах переменного тока практически не применяется. Зато во многих случаях применяются конструкции с якорем, имеющим черты как втягивающегося, так и внешнего притягивающегося (рисунок 10.4 в)

Формы конструктивного выполнения электромагнитов переменного тока ограничены из-за необходимости выполнять их магнитопроводы шихтованными из тонких листов электротехнической стали. Последнее диктуется стремлением свести к минимуму потери на вихревые токи. С этой же целью, а также для уменьшения потерь на гистерезис приходится применять специальные технологические приемы при изготовлении электромагнитов, что в свою очередь также сказывается на их конструкции.

Электромагниты различают также по ряду других признаков:

v по способу включения обмоток — с параллельными и последовательными обмотками;

v по характеру работы — работающие в длительном, прерывистом и кратковременном режимах;

v по скорости действия — быстродействующие и замедленного действия и т. д.

Магнитные материалы и их характеристики. Применение в электромагнитах.

Для изготовления магнитопроводов электромагнитов применяют- ся магнитно-мягкие материалы. Они характеризуются высокой проницаемостью в слабых и средних полях и низкой коэрцитивной силой. Для них, как впрочем и для всех ферромагнитных материалов, характерным является зависимость намагниченности от температуры и наличие определенной температуры (точка Кюри) в пределах твердого состояния, при которой материал становится немагнитным.

а) Характеристика магнитного состояния.Для ферромагнитных материалов связь между магнитной индукцией и напряженностью поля не является однозначной. Она зависит от предыдущего магнитного со стояния и определяется точка- ми, находящимися внутри предельной петли магнитного гистерезиса (рисунок 10.5).

Рисунок 10.5 — Петли магнитного гистерезиса

Если в первоначально размагниченном образце увеличивать напряженность по- ля, то индукции будет возрастать по кривой первоначального намагничивания (кривая 1, рисунок 10.5). При циклическом изменении напряженности поля между равными по величине положительными и отрицательными значениями Н индукция будет следовать так называемым симметричным или основным петля магнитного гистерезиса, конфигуация которых для данного — материала определяется пределами изменения напряженности поля.

Кривая, идущая от начала координат и соединяющая вершины основных петель, Рисунок 10.5. Петли магнитного гисерезиса ферромагнитного материала называется основной или коммутационной — кривой намагничивания (кривая 2 рисунок 10.5).

В электромагнитах, работающих при переменном магнитном потоке, происходит непрерывное циклическое перемагничивание. Поэтому магнитное состояние их магнитопровода определяет именно ком- мутационная кривая намагничивания, причем небезразлично, каким образом эта кривая снята: коммутационным методом на постоянном токе или на переменном. При расчетах тех или иных магнитов следует пользоваться данными, полученными для магнитов постоянного или переменного тока.

В тех случаях, когда напряженность поля, имея постоянную составляющую, меняется в небольших пределах, изменение индукции происходит по малому ч частному циклу — гистерезиса. В этом случае связь между индукцией и напряженностью поля может быть приближенно выражена через среднюю проницаемость в частном цикле:

Читайте также:  Вся правда чип тюнинга

μΔ= где ΔΒ и ΔΗ — приращения индукции и напряженности, определяю- щие частный цикл. Ее величина в каждой точке нормальной кривой меньше проницаемости μ, и зависит от величины смещающего поля и величины ΔΗ. Предел, к которому стремится μΔ при уменьшении ΔΗ до нуля, называется обратимой проницаемостью μΔ.

Также у материалов для магнитов на переменном токе учитываются еще

б)Потери на перемагничивание.При перемагничивании (изменении магнитного состояния) образца из ферромагнитного материала затрачивается определенная энергия, выделяющаяся в виде тепла. Энергия, выделяющаяся за один цикл перемагничивания, характеризуется площадью, заключенной внутри соответствующей петли маг- нитного гистерезиса.

в) Потери от вихревых то- ков и общие потери.При переменном магнитном поле в ферромагнетике кроме потерь, связанных с гистерезисом, возни- кают также потери из-за вихре- вых токов. Эти токи появляются под действием э. д. с., на- водимой переменным магнитным потоком в ферромагне- тике. Для снижения потерь от вихревых токов магнитопровод приходится делать шихтованным, т. е. выполнять из набора тонких пластин, изолированных в электрическом отношении друг от друга. Если пластины тонкие, то можно считать, что магнитный поток по их толщи- не распределен равномерно, а контуры вихревых токов имеют стороны, параллельные сторонам по- перечного сечения пластины. Магнитные материалы, применяемые в электрома- гнитах. При изготовлении магнитопроводов электромагнитов постоянного и переменного тока находят применение низкоуглеродистые электротехнические стали, кремнистые электротехнические стали, качественные конструкционные стали с содержанием углерода до 0,2 — 0,25%, стальное литье, чугуны, специальные железоникелевые и железокобальтовые стали. Для магнитопроводов электромагнитов высокочувствительных электромагнитных устройств применяются железоникелевые сплавы, обладающие очень малой коэрцитивной силой (0,01 — 0,1 а/см) и чрезвычайно высокой проницаемостью в слабых полях ( доходит до 300000). Недостатком этих сплавов являются сравнительно низкая ин- дукции насыщения (7000 — 10000 гс) и большая чувстви- тельность к механическим воздействиям. Появляющийся в этом случае наклеп приводит к сильному ухудшению магнитных свойств. Низкоуглеродитые электротехнические стали (ма- рок Э, А и т. п.), содержащие углерод в количестве до 0,04% и выпускаемые в виде листов и прутков, наиболее часто применяются для изготовления маломощных электромагнитов. Они имеют незначительную коэрцитивную силу (0,3 — 1,2 а/см) при высокой проницаемости ( оходит до 6000) и индукции насыщения до 21400 гс. Благодаря этому можно допускать значительно большие значения индукции, чем при применении железоникелевых сплавов, что существенно в электромагнитах на большие рабочие усилия.

При отсутствии жестких требований к значениям Нс и , например в силовых электромагнитах, электромагнитах многих коммутационных аппаратов и реле управления, для изготовления магнитопроводов применяют качественные конструкционные стали (марок 0; 1; 2 и тонко листовые 0,5; 0,8; 10; 15 и 20), имеющие при соответствующей термической обработке коэрцитивную силу от 0,7 до 3,5 а/см и максимальную проницаемость 2000— 4000.

В некоторых случаях, особенно для больших электромагнитов, из технологических соображений части магнитопроводов выполняются из стального литья и чугуна, обладающих сравнительно низкими магнитными свойствами. При обычном изготовлении стальные и чугунные отливки не подвергаются дополнительной термической обработке, однако отжиг может значительно улучшить их магнитные свойства. Кремнистые стали (марок Э11, Э21 и др.) применяют для изготовления магнитопроводов быстродействующих электромагнитов постоянного тока. Обладая высокими магнитными свойствами (Нс =0,2 — О,7 а/см =5000 — 10000 и ВS=19200 — 21000 гс) они имеют в не- сколько раз меньшую электропроводность, что приводит к снижению вихревых токов и, следовательно, уменьшает их влияние на скорость срабатывания электромагнита. Они также широко применяются в электромагнитах переменного тока.

С точки зрения снижения габаритов и веса электромагнитов, что особенно существенно для многих случаев их специального применения, большой интерес представляют сплавы железа с кобальтом (типа пермендюр) вследствие их большой индукции насыщения (ВS =23600 гс) при до- статочно низкой коэрцитивной силе (1,2 — 1,6 а/см) и вы- сокой проницаемости ( достигает 4500) .

Для изготовления магнитопроводов электромагнитов, работаю- щих при переменном магнитном потоке, применяют почти исключи- тельно кремнистые электротехнические стали. Им присущи малые потери на гистерезис благодаря незначительной — коэрцитивной силе и низкие потери на вихревые токи благодаря повы- шенному удельному электрическому сопротивлению. Для снижения потерь на вихревые токи магнитопроводы изготовляются в виде тон- ких листов толщиной от 0,1 до 1 м и.

Химический состав и свойства этих сталей нормируются ГОСТ 802-54, который включает 28 марок. Основное различие между ними, определяющее их свойства, заключается в содержании кремния и ха- рактере механической обработки (прокатки) в процессе производства листов.

Увеличение содержания кремния приводит к повышению магнит- ной проницаемости в слабых и средних полях, снижению потерь и коэрцитивной силы. Однако при этом повышается твердость и хруп- кость материала, что затрудняет изготовление из него деталей.

Железноникелевые стали, обладающие весьма высокой начальной и максимальной проницаемостью, малыми потерями и низкими значениями коэрцитивной силы, для электромагнитов применяются только в исключительных случаях, когда требуется особо высокая чувствительность. Вообще же из-за низкой индукции насыщения их использование в электромагнитах, как правило, нецелесообразно.

Adblock
detector