Масло для мотора компрессора холодильника
Роль масла в компрессорных холодильных установках и устройствах кондиционирования воздуха низкой и средней мощности играет особую роль, поскольку оно находится в постоянном контакте с хладагентом, циркулируя вместе с ним по системе.
Основная задача холодильного масла заключается в обеспечении смазки между механически взаимодействующими частями и удалением тепла в результате трения этих элементов. Он также обеспечивает охлаждение двигателя компрессора.
Масло из холодильной установки захватывается парами хладагента и циркулирует вместе с ним по установке. Масло, в отличие от хладагента, не подвергается фазовым изменениям, происходящим в теплообменниках. Поэтому, желательно, чтобы количество масла, попадающего в установку, было как можно меньше. Масло, захватываемое парами хладагента во время сжатия, уносится в конденсатор, где фреон конденсируется. В этой связи, следует отметить, что каждый производитель масла старается максимально обеспечивает смешиваемость масла с хладагентом, в зависимости от рабочей температуры. Масло следует выбирать на основе смешиваемости, чтобы сформировать жидкую смесь с фреоном. Это облегчит дальнейший движение масла по системе и предотвратит чрезмерное отложение масла в теплообменниках, что приведет к улучшению теплообменных свойств испарителя и конденсатора. Из конденсатора смесь жидкости и хладагента поступает в расширительный клапан, откуда оно поступает в испаритель. В испарителе во время процесса испарения часть масла отделяется, причем, с понижением температуры масло теряет свою текучесть. При сниженной текучести, чтобы масло не оставалось в теплообменнике, необходимо обеспечить правильную скорость движения хладагента для того, чтобы тот подхватывал капли масла и возвращал его обратно в компрессор.
Полностью невозможно избежать присутствия масла в холодильном контуре. Тем не менее, можно обеспечить максимальный возврат масла в компрессор, благодаря использованию правильных конструктивных решений, обеспечивающих этот процесс. Это правильное функционирование трубопровода, с соблюдением соответствующих диаметров, уклонов, геометрии трубопровода, благодаря которым, возможно поддержание соответствующего скорости хладагента. Благодаря этому, можно не беспокоится о возврате масла из контура.
Метод правильной прокладки трубопровода представлен на рисунке. Наклон нагнетательных трубопроводов в 2 ÷ 3% обеспечивает движение масла в направлении потока хладагента, тем самым предотвращая обратный поток масла в сторону компрессора при остановки или работе компрессора на неполной мощности. Жидкостную линию следует располагать в горизонтальном положении (при условии обеспечения необходимой скорости фреона). Горизонтальное положение всасывающего трубопровода в этом случае является неправильным. Для них, необходимо обеспечить уклон в сторону компрессора в 2 ÷ 3% (на 10м, 2 см уклона). В вертикальных участках нагнетательного трубопровода часто наблюдается стекание масла по стенке трубы из-за силы тяжести, вследствие, неправильных гидравлических расчетов. Для предотвращения этого эффекта нужно обеспечить более высокую скорости потока — от 10 до 15 м / с — в зависимости от типа хладагента и масла. Кроме того, необходимо использовать сифоны каждые 2¸3 м на восходящих трубопроводах всасывания и восходящих нагнетания. В холодильных установках, оборудованных компрессором с регулируемой мощностью или в устройствах с несколькими компрессорами с разной производительностью, одна вертикальная труба нагнетания недостаточна. В таких случаях используются две параллельные трубы. Во время небольших нагрузок активна только одна из них, а другая закрыта маслом, собранным в специально созданном сифоне. Однако при работе на полную мощность, масло в сифоне захватывается, и хладагент течет одновременно по обеим линиям. Во время небольших нагрузок активена только одна из них, а другая закрыт маслом, собранным в специально созданном сифоне. Однако, при работе на полную мощность, масло из сифона захватывается хладагентом, и хладагент течет одновременно по обеим линиям. Тем самым, мы повышаем скорость потока газа, и предотвращаем застой масла.
В холодильных установках с несколькими компрессорами, линия нагнетания должна быть проложены таким образом, чтобы хладагент после компрессора, а с ним и масло не стекало обратно, вовремя остановки компрессора, и чтобы масло, которое покинуло рабочие компрессоры не стекало в нерабочий компрессор. В этом случае, используется нагнетающий коллектор, и обратный клапан (на рисунке не показан) после каждого компрессора.
На выходе из испарителя за местом крепления термодатчика трв, контролирующего работу расширительного элемента, должна быть установлена так называемая «маслоподъемная петля» в которой накапливается масло после испарителя. Благодаря этому устройству внутри трубы, где установлен датчик, нет масла, это предотвращает от сбоев в работе термостатического расширительного элемента. Если линия всасывания проложена с уклоном, сифон не требуется (в некоторой литературы так указано). По мнению автора и не только, сифон нужен всегда, а лучше после сифона сделать подъем трубы вверх, хотя бы на половину высоты испарителя, если у вас нисходящий всасывающий трубопровод. Это предотвратит вас от гидроудара на компрессор при неотрегулированном трв, при негерметичном соленоидном вентиле и т.д.
Если испарители подключены к общему коллектору, трубопроводы должны быть вставлены сверху в коллектор, а из коллектора — петля, идущая снизу в линию всасывания компрессора. Такой способ монтажа исключает взаимное воздействие друг на друга испарителей, соединенных последовательно и возможность попадания в них капель масла с растворенным в них хладагентом.
Современные экологические фреоны требуют применения масел, соответствующих примененных в них компрессоров при соответствующих условиях работы. Правильно подобранное масло, сохраняющее свои физико-химические свойства и термическую стабильность во всем диапазоне работы машины, имеет правильное воздействие на хладагент, обеспечивает правильный уровень смазки компрессора и положительно влияет на циркуляцию масла в системе, что обеспечивает правильное его возвращение вместе с фреоном.
belcool.org
ремонт холодильного оборудования +375-29-1-444-379
Масло для мотора компрессора холодильника
Характеристики синтетических масел:
температура застывания ниже, чем у минеральных;
высокая термическая стабильность;
более качественная смазка элементов;
при соединениис хладагентами свойства не изменяются;
нет отрицательного воздействия на материалы холодильной установки.
Требования, предъявляемые к холодильным маслам, которые смешиваются с хладагентами:
не задерживается в испарителе (свободное движениев системе при низких температурах);
совместимость с хладагентом;
холодильное масло высокого качества образует хлопья только при очень низкой температуре;
минимальное отрицательное воздействие на материалы, используемые в производстведеталей системы.
Минеральные масляные жидкости
Хладоны старого поколения R12 и R22 отлично уживаются с маслами, имеющими минеральную основу. Стоимость такой смесибудет минимальной и высокого качества без присадков.
Минеральные жидкости используют масла с качественной очисткой. Получаемый продукт активно используется в холодильных установках.
Синтетические и полусинтетические масляные жидкости
Хладагенты,состоящие из смеси фреонов плохо взаимодействуют с минеральными маслами. На выручку приходят синтетические жидкости, способные прекрасно смешиваться с хладагентами.
Полусинтетические масла могут применяться практически в любых холодильных установках, предназначенныхдля использования в промышленности и быту.
Свойства синтетических масел:
пониженная способность к поглощению водяных паров из воздуха (гигроскопичность);
не агрессивны к полимерам;
защищают от коррозии цветного металла. Повышают срок службы деталей из него изготовленных;
повышенная сопротивляемость гидролизу.
Другие синтетически жидкости изготовили тогда, когда появились новые виды хладонов. Основным требованием к новым фреонам является безопасностьозонового слоя планеты. Было разработано около 40 разновидностей всего, вот некоторые из них: фреоны R23, R134A, R404A, R407A, R410A, R507.
Благодаря этим разработкам холодильные детали установки содержатся в идеальном порядке, так как осадок не появляется даже с течением времени.
Специалисты рекомендуют к применению синтетические масла.
При верном выборе масла компрессор прослужит долгое время. Получаемая смесь должна свободно перемещаться по системе, оставаться в жидком состоянии даже при пониженной температуре. Это препятствует скоплению в испарителе. Но все же вязкость масла должна быть на высоком уровне, что обеспечивает герметичность изделия при повышении температуры. Узнать подходящую марку масла можно у производителей холодильных установок, так как нет масляных жидкостей, которые бы могли свободно взаимодействовать со всеми используемыми в производстве хладагентами. Марка подбирается с тем учетом, чтобы удовлетворялись главные эксплуатационные характеристики.
Замену холодильного масла совершают только после консультации с профессионалами.
Холодильные масла
Компрессорные системы охлаждения невозможно представить без различных видов масел. Состав их может быть самым разным, однако такие холодильные масла все-таки поддаются классификации. Условно их принято делить на три группы.
Минеральные масла – это нафтеновые и парафиновые масла. Синтетические масла – это алкилбензольные, полиалкилгликольные, полиолэфирные и полиальфаолефиновые масла. Полусинтетические масла состоят из смесей масел.
Минеральные масла по-прежнему считаются наиболее используемыми. Однако по сравнению с ними синтетические масла имеют некоторые преимущества. Смазывающие качества, например, у них лучше. Как и ниже температура застывания. Однако, если быть объективным, то нужно подчеркнуть, что такие холодильные масла отличаются и высокой ценой, что принято считать существенным фактором на рынке.
Если кого-то перечисленные выше масла интересуют как товар, то ему необходимо знать некоторые его свойства. Плотность – одно из них. Она зависит от фрикционного состава и увеличивается, коль содержание ароматических углеводов больше. Она же становится ниже, если повышается температура. Еще одно свойство – температура застывания и текучести. К важным свойствам масел относятся также температура помутнения, кислотность, содержание воды и гигроскопичность масла, поверхностное натяжение, вид и цвет, вспениваемость, химическая стабильность, смешиваемость и растворимость. На таком свойстве, как вязкость, мы остановимся более подробно. Существует градация международного стандарта, а она предусматривает такую характеристику, как кинематическая вязкость при сорока градусах Цельсия, которая исчисляется в сантистоксах. Исходя из этого показателя, мы можем определить диапазон значений вязкости для некоторых условий работы.
Так, для герметичных компрессоров малой производительности при умеренной температуре она составляет 10-40 сантистоксов. Для винтовых – более ста сантистоксов, но не менее пятидесяти. Для центробежных компрессоров – 40-70 сантистоксов. Для поршневых компрессоров – 15-68 сантистоксов. Для кондиционеров и тепловых насосов, соответственно, 60-80 сантистоксов и 60-100 сантистоксов. Быстроходным компрессорам определен свой диапазон: не менее 6-7 сантистоксов – при температуре 100 градусов Цельсия и 8-10 сантистоксов – при температуре 100 градусов для напряженных условий работы. К сказанному нужно добавить, что потери на трение возрастают, если вязкость высокая. Может быть разрыв масляной пленки между сопрягаемыми деталями, если вязкость слишком низкая. А, значит, износ происходит быстрее. Если температура поднимается, то вязкость становится меньше. В результате цилиндр и поршень сильно изнашиваются.
Масло для мотора компрессора холодильника
При работе компрессор имеет некую особенность — он немного гонит масло совместно с сжатым воздухом. Следовательно, масло нужно время от времени подливать, а после определённой наработки его вообще нужно полностью менять. По опыту трёхлетней эксплуатации компрессора могу сказать, что масла он гонит очень и очень мало. За всё время ушло не более 30ти – 40ка грамм. Принципиально до этой доработки не сливал масло ни с ресивера, ни с масловлагоотделителя. В итоге за время эксплуатации в ресивер вообще ничего не попало, всё собрал масловлагоотделитель. Теперь дальше. Контролировать уровень масла не представляется возможным (покрасней мере пока). И чтобы при доливе не перелить масло выше положенного уровня, было решено, что с компрессора сливать нужно всё масло, и после этого заливать нужный объём. В ходе этих размышлений выявился ещё один момент. При изготовлении компрессора, слив масла предусмотрен не был (слив был сделан только с ресивера).
Изготовление слива масла с компрессорного агрегата.
Слив изготавливается путём просверливания отверстия в корпусе компрессора. Корпус выполнен из толстой листовой стали около 4х – 5ти миллиметров. Этой толщины вполне достаточно для нарезания резьбы М6. После того как резьба готова завинчивается болт-пробка. Эта доработка кажется простой только на первый взгляд.
Инструмент для выполнения работ: керн, молоток, два сверла метчик, держатель метчика, два магнита, металлический круглый щуп. Детали: болт М6х10 (если подходящего болта по длине нет, то его нужно обрезать), медная шайба.
Итак, в нижней части корпуса компрессора сначала сверлится отверстие диаметром 2,0 – 3,0 мм, после чего сверлим отверстие диаметром 5 мм.
Далее метчиком нарезаем резьбу М6. Очень ответственный момент! В процессе нарезания резьбы очень важно чтобы внутри компрессора находилось масло. Это необходимо чтобы стружка и опилки, которые вдруг попадут внутрь (а они к сожалению туда немного попадут), вымывались маслом наружу. Ещё одно ухищрение — при нарезании резьбы — нужно прикрепить к метчику небольной магнит, чтобы он удерживал стружку на себе и не давал попадать внутрь.
Нарезать резьбу необходимо поэтапно, по полтора – два оборота, потом метчик нужно выкручивать и очищать (по крайней мере, я делал так).
Масло во время нарезания резьбы нужно будет подливать. После того как резьба нарезана, дожидаемся когда всё масло стечёт.
Теперь необходимо промыть изнутри компрессор маслом. Для этого можно воспользоваться слитым маслом, но перед этим очищаем его при помощи фильтра для краски. Для этого берём два фильтра, вставляем их друг в друга, внутрь помещаем магнит и переливаем масло из одной ёмкости в другую.
Завинчиваем пробку и заливаем масло. Затем вновь откручиваем пробку и опять сливаем масло. Пока масло вытекает, с помощью круглого щупа и прикрепленного к нем у магнита, пытаемся собрать частички металла просовывая внутрь отверстия щуп. Процедуру проделываем до тех пор пока щуп и вытекающее масло из компрессора не перестанут содержать металлические опилки.
Осмотрим слитое масло на наличие металлических частичек и если их нет, то завинчиваем пробку (болт с медной шайбой) на герметик и заправляем компрессор необходимым количеством чистого масла.
Самая трудоёмкая и муторная операция это отлов опилок, но она является значимой. От качества выполнения этой операции зависит ресурс компрессора.
И ещё один момент: после того как пробка закручена, к нижней части самого компрессора крепим магнит. На всякий случай для перестраховки вдруг что осталось из металлической стружки.