Меню

Двигатели параллельного возбуждения особенности двигателей с последовательным возбуждением

Основные характеристики двигателей постоянного тока параллельного, последовательного и смешанного возбуждения

Двигатель с параллельным возбуждением. В этом двигателе (рис. 8.59, а) обмотка возбуждения подключена параллельно с обмоткой якоря к сети. В цепь обмотки возбуждения включен регулировочный реостат Rр.в., а в цепь якоря — пусковой реостат Rп . Характерной особенностью двигателя является то, что его ток возбуждения Iв не зависит от тока якоря Iа (тока нагрузки), так как питание обмотки возбуждения по существу независимое. Следовательно, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя не зависит от нагрузки. При этом условии согласно (8.84) и (8.85) получаем, что зависимости М = f(Ia ) и n = f(Ia) (моментная и скоростная характеристики) линейные (рис. 8.59,б). Следовательно, линейна и механическая характеристика двигателя n = f(M) (рис. 8.60, а).

Если в цепь якоря включен добавочный резистор или реостат Rп , то

п = [U — Iа(ΣRа + Rn )]/(свФ) = n0 — Δn, (8.86)

Рис. 8.59. Схема двигателя с параллельным возбуждением и его моментная и скоростная характеристики.

где n0 = U/(свФ) — частота вращения при холостом ходе; Δп = (ΣRа + Rn )Iа /(свФ) — снижение частоты, обусловленное суммарным падением напряжения во всех сопротивлениях, включенных в цепь якоря двигателя. Величина Δn , зависящая от суммы сопротивлений ΣRа + Rn , определяет наклон скоростной n = f(Ia) и механической n = f(M) характеристик к оси абсцисс.

Двигатель с последовательным возбуждением. В этом двигателе (рис. 8.61, а) ток возбуждения Iв = Ia, поэтому магнитный поток Ф является некоторой функцией тока якоря Ia. Характер этой функции изменяется в зависимости от нагрузки двигателя. При Ia Iном ) можно считать, что Ф ≈ const. В соответствии с этим изменяются в зависимости n = f(Ia) и М = f(Ia). При Ia

Дата добавления: 2015-03-23 ; просмотров: 4765 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Двигатели последовательного возбуждения

Схема двигателя. Схема двигателя последовательного возбуждения изображена на рис. 1.31. Ток, потребляемый двигателем из сети, протекает по якорю и обмотке возбуждения, соединенной с якорем последовательно. Поэтому I = Iя = Iв.

Также последовательно с якорем включен пусковой реостат Rп, который, как и у двигателя параллельного возбуждения, после выпуска выводится.

Уравнение механической характеристики. Уравнение механической характеристики может быть получено из формулы (1.6). При токах нагрузки, меньших (0,8 – 0,9) Iном, можно считать, что магнитная цепь двигателя не насыщена и магнитный поток Ф пропорционален току I : Ф = kI, где k = const. (При больших токах коэффициент k несколько уменьшается). Заменяя в (1.2) Ф, получаем М = См kI откуда

Iя =

Ф =. (1.10)

Подставим Ф в (1.6):

n = (1.11)

График, соответствующий (1.11), представлен на рис. 1.32 (кривая 1). При изменении момента нагрузки частота вращения двигателя резко изменяется – характеристики подобного типа называются «мягкими». При холостом ходе, когда М » 0, частота вращения двигателя безгранично возрастает и двигатель «идет вразнос».

Ток, потребляемый двигателем последовательного возбуждения, при увеличении нагрузки растет в меньшей степени, чем у двигателя параллельного возбуждения. Это объясняется тем, что одновременно с ростом тока растет поток возбуждения и вращающий момент становится равным моменту нагрузки при меньшем токе. Эта особенность двигателя последовательного возбуждения используется там, где есть значительные механические перегрузки двигателя: на электрифицированном транспорте, в подъемно-транспортных механизмах и других устройствах.

Регулирование частоты вращения. Регулирование частоты вращения двигателей постоянного тока, как указывалось выше, возможно тремя способами.

Изменение возбуждения можно осуществить включением реостата Rр1 параллельно обмотке возбуждения (см. рис. 1.31) или включением реостата Rр2 параллельно якорю. При включении реостата Rр1 параллельно обмотке возбуждения магнитный поток Ф можно уменьшать от номинального до минимального Фmin. Частота вращения двигателя при этом будет увеличиваться (в формуле (1.11) уменьшается коэффициент k). Механические характеристики, соответствующие этому случаю, показаны на рис. 1.32, кривые 2, 3. При включении реостата параллельно якорю ток в обмотке возбуждения, магнитный поток и коэффициент k увеличиваются, а частота вращения двигателя уменьшается. Механические характеристики для этого случая изображены на рис. 1.32, кривые 4, 5. Однако регулирование вращения реостатом, включенном параллельно якорю, применяется редко, так как потери мощности в реостате и КПД двигателя уменьшается.

Читайте также:  Ремонт электроподъемника двери автомобиля

Изменение частоты вращения путем изменения сопротивления цепи якоря возможно при включении реостата Rр3 последовательно в цепь якоря (рис. 1.31). Реостат Rр3 увеличивает сопротивление цепи якоря, что ведет к уменьшению частоты вращения относительно естественной характеристики. (В (1.11) вместо Rя надо подставить Rя + Rр3.) Механические характеристики при этом способе регулирования представлены на рис. 1.32, кривые 6, 7. Подобное регулирование используется сравнительно редко из-за больших потерь в регулировочном реостате.

Наконец, регулирование частоты вращения изменением напряжения сети, как и в двигателях параллельного возбуждения, возможно только в сторону уменьшения частоты вращения при питании двигателя от отдельного генератора или управляемого выпрямителя. Механическая характеристика при этом способе регулирования изображена на рис. 1.32, кривая 8. При наличии двух двигателей, работающих на общую нагрузку, они с параллельного соединения могут переключаться на последовательное, напряжение U на каждом двигателе при этом уменьшается вдвое, соответственно уменьшается и частота вращения.

Тормозные режимы двигателя последовательного возбуждения. Режим генераторного торможения с отдачей энергии в сеть в двигателе последовательного возбуждения невозможен, так как получить частоту вращения n>nx не представляется возможным (nх = ).

Режим торможения противовключением можно получить, так же как в двигателе параллельного возбуждения, путем переключения выводов обмотки якоря или обмотки возбуждения.

Виды возбуждения и схемы включения двигателей постоянного тока.

Двигатели постоянного тока в зависимости от способов их воз­буждения, как уже отмечалось, делятся на двигатели с независимым, параллельным (шунтовым), последовательным (сериесным) и смешанным (компаундным) возбуждением.

Двигатели независимого возбуждения, рис.8,а, требуют два источника питания. Один из них необходим для питания обмотки якоря (выводы Я1 и Я2 ), а другой — для создания тока в обмотке возбуждения (выводы обмотки Ш1 и Ш2). Дополнительное сопротивление в цепи обмотки якоря необходимо для уменьшения пускового тока двигателя в момент его включения.

С независимым возбуждением выполняются в основном мощные электрические двигатели с целью более удобного и экономичного регулирования тока возбуждения. Сечение провода обмотки возбуждения определяется в зависимости от напряжения ее источника питания. Особенностью этих машин является независимость тока возбуждения, а соответственно и основного магнитного потока, от нагрузки на валу двигателя.

Двигатели с независимым возбуждением по своим характеристикам практически совпадают с двигателями параллельного возбуждения.

Двигатели параллельного возбуждения включаются в соответствии со схемой, показанной на рис.8,6. Зажимы Я1 и Я2относятся к обмотке якоря, а зажимы Ш1 иШ2 — к обмотке возбуждения (к шунтовой обмотке). Переменные сопротивления и предназначены соответственно для изменения тока в обмотке якоря и в обмотке возбуждения. Обмотка возбуждения этого двигателя выполняется из большого количества витков медного провода сравнительно малого сечения и имеет значительное сопротивление. Это позволяет подключать ее на полное напряжение сети, указанное в паспортных данных.

Читайте также:  Как откачать масло с двигателя автомобиля

Особенностью двигателей этого типа является то, что при их работе запрещается отсоединять обмотку возбуждения от якорной цепи. В противном случае при размыкании обмотки возбуждения в ней появится недопустимое значение ЭДС, которое может привести к выходу из строя двигателя и к поражению обслуживающего персонала. По той же причине нельзя размыкать обмотку возбуждения и при выключении двигателя, когда его вращение еще не прекратилось. •

С увеличением частоты вращения его следует уменьшать, а при достижении установившейся частоты вращения — вывести

Рис. 8. Виды возбуждения машин постоянного тока,

а — независимого возбуждения , б — параллельного возбуждения,

в — последовательного возбуждения, г — смешанного возбуждения.

ОВШ — обмотка возбуждения шунтовая, ОВС — обмотка возбуждения

сериесная,’ ОВН — обмотка независимого возбуждения, Rд —

Долнительное сопротивление в цепи обмотки якоря, Rв- Дополнительное сопротивление в цепи обмотки возбуждения.

полностью. Отсутствие дополнительного сопротивления в обмотке якоря в момент пуска двигателя может привести к появлению большого пускового тока, превышающего номинальный ток якоря в 10. 40 раз [1,2].

Важным свойством двигателя параллельного возбуждения служит’ практически постоянная его частота вращения при изменении нагрузки на валу якоря. Так при изменении нагрузки от холостого хода до номинального значения частота вращения уменьшается всего лишь на (2.. 8)% [1,12].

Второй особенностью этих двигателей служит экономичное регулирование частоты вращения, при котором отношение наибольшей скорости к наименьшей может составлять 2:1, а при специальном исполнении двигателя — 6:1. Минимальная частота вращения ограничивается насыщением магнитной цепи, которое не позволяет уже увеличивать магнитный поток машины, а верхний предел частоты вращения определяется устойчивостью машины — при значительном ослаблении магнитного потока двигатель может пойти «вразнос» [1,3,4,6].

Двигатели последовательного возбуждения (сериесные) включаются по схеме, рис.8, в. Выводы С1 и С2 соответствуют сериесной (последовательной) обмотке возбуждения. Она выполняется из сравнительно малого числа витков в основном медного провода большого сечения. Обмотка возбуждения соединяется последовательно с обмоткой якоря. Дополнительное сопротивление в цепи обмоток якоря и возбуждения позволяет уменьшить пусковой ток и производить регулирование частоты вращения двигателя. В момент включения двигателя оно должно иметь такую величину, при которой пусковой ток будет составлять (1,5. 2,5)Iн. После достижения двигателем установившейся частоты вращения дополнительное сопротивление выводится, то есть устанавливается равным нулю.

Эти двигатели при пуске развивают большие пусковые моменты вращения и должны запускаться при нагрузке не менее 25% ее номинального значения. Включение двигателя при меньшей мощности на его валу и тем более в режиме холостого хода не допускается. В противном случае двигатель может развить недопустимо большие обороты, что вызовет выход его из строя [1,6,12 ]. Двигатели этого типа широко применяются в транспортных и подъемных механизмах, в которых необходимо изменять частоту врашения в широких пределах.

Двигатели смешанного возбуждения (компаундные), рис.8, г, занимают промежуточное положение ?» между двигателями параллельного и последовательного возбуждения. Большая принадлежность их к тому или другому виду зависит от соотношения частей основного потока возбуждения, создаваемых параллельной или последовательной обмотками возбуждения. В момент включения двигателя для уменьшения пускового тока в цепь обмотки якоря включается дополнительное сопротивление . Этот двигатель обладает хорошими тяговыми характеристиками и может работать в режиме холостого хода.

Читайте также:  Асинхронные машины назначение устройство работа

Прямое (безреостатаное) включение двигателей постоянного тока всех видов возбуждения допускается мощностью не более одного киловатта.

6. Обозначение машин постоянного тока.

В настоящее время наиболее широкое распространение получили машины постоянного тока общего назначения серии и наиболее новой серии 4П. Кроме этих серий выпускаются двигатели для крановых, экскаваторных, металлургических и других приводов серии Д. Изготавливаются двигатели и специализированных серий [5,6,8].

Двигатели серий и подразделяются по оси вращения, как это принято для асинхронных двигателей переменного тока серии. Машины серии имеют 11 габаритов, отличающихся по высоте вращения оси от 90 до 315 мм. Диапазон мощностей машин этой серии составляет от 0,13 до 200 кВт для электрических двигателей и от 0,37 до 180 кВт для генераторов. Двигатели серий 2П и 4П рассчитываются на напряжение 110, 220, 340 и 440 В. Их номинальные частоты вращения составляют 750, 1000, 1500,2200 и 3000 об/мин.

Каждый из 11 габаритов машин серии имеет станины двух Длин ( М и L ).

Электрические машины серии имеют лучшие некоторые технико — экономические показатели по сравнению с серией . 1 рудоемкость изготовления серии по сравнению с снижена в 2,5. 3 раза.’ При этом расход меди снижается на 25. 30 %. По ряду конструктивных особенностей, в том числе по способу охлаждения, по защите от атмосферных воздействий, по использованию отдельных деталей и узлов машины серии унифицированы с асинхронными двигателями серии иАИ [10,11].

Обозначение машин постоянного тока (как генераторов, так и двигателей) представляется следующим образом:

2ПХ1Х2ХЗХ4 ,

где — серия машины постоянного тока;

XI — исполнение по типу защиты: Н — защищенное с само­вентиляцией, Ф — защищенное с независимой вентиля­цией, Б — закрытое с естественным охлаждением, О — закрытое с обдувом от постороннего вентилятора;

Х2 — высота оси вращения ( двухзначное или трехзначное число) в мм;

ХЗ— условная длина статора: М — первая, L — вторая, Г — с тахогенератором;

Х4 — климатическое исполнение и категория размеще­ния: У — умеренный климат, Т — тропический климат.

В качестве примера можно привести обозначение двигателя 2ПН112МГУ — двигатель постоянного тока серии , защищенного исполнения с самовентиляцией Н,112 высота оси вращения в мм, первый размер статораМ, укомплектован тахогенератором Г, используется для умеренного климатаУ.

По мощностям электрические машины постоянного тока условно могут быть подразделены на следующие группы [12]:

Микромашины ………………………. меньше 100 Вт,

Мелкие машины ………………………от 100 до 1000 Вт,

Машины малой мощности…………..от 1 до 10 кВт,

Машины средней мощности………..от 10 до 100 кВт,

Крупные машины……………………..от 100 до 1000 кВт,

Машины большой мощность……….более 1000 кВт.

По номинальным напряжениям электрические машины подразделяются условно следующим образом:

Низкого напряжения…………….меньше 100 В,

Среднего напряжения ………….от 100 до 1000 В,Высокого напряжения

По частоте вращения машины постоянного тока могут быть представлены как:

Тихоходные…………….менее 250 об/мин.,

Средней скорости………от 250 до 1000 об/мин.,

Быстроходные………….от 1000 до 3000 об/мин.

Сверхбыстроходные…..выше 3000 об/мин.

| следующая лекция ==>
Принцип получения ЭДС генераторов постоянного тока. | Задание и методика выполнения работы.

Дата добавления: 2019-04-03 ; просмотров: 1638 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Adblock
detector