Двигатель 5ТДФ: технические характеристики
Двигатель 5ТДФ — это одно из самых уникальных изобретений в области силовых агрегатов. Он был изобретен еще в Советском Союзе. Отличительная черта в том, что он был разработан вовсе не для автомобилей, а для такого танка, как Т-64. Однако больше всего популярности ему принесла его необычная конструкция.
Общее описание оборудования
Двигатель 5ТДФ являлся пятицилиндровым. Только этот факт уже делал его достаточно необычным. Кроме этого, он имел в своей конструкции 10 таких деталей, как шатуны и поршни. Кроме того, здесь использовались два коленчатых вала одновременно. Поршни в цилиндрах совершали необычные движения. Они двигались навстречу друг другу, после этого обратно, снова навстречу и так далее. Отбор мощности в данном случае производился с обоих коленчатых валов, чтобы было максимально удобно для управления танком.
Принцип работы двигателя 5ТДФ — двухтактный. В данном случае поршни этого устройства играли роль золотников. Они открывали как впускные, так и выпускные окна. Другими словами, никакие клапаны или распредвалы в данном случае не использовались.
Из-за всех особенностей, которые были описаны выше, получилось так, что конструкция двигателя 5ТДФ была максимально эффективной и гениальной в некотором роде. Это объяснялось тем, что двухтактный цикл работы обеспечивал максимальную литровую мощность при работе двигателя, а его прямоточная продувка обеспечивала высокое качество наполнения цилиндров.
Впрыск агрегата
Двигатель 5ТДФ отличался еще и тем, что он представлял собой дизельный агрегат с непосредственным впрыском. Имеется в виду, что топливо подавалось в нужное пространство между поршнями за несколько мгновений до того, как они доходили до максимального сближения. Еще одна особенность здесь состояла в том, что, во-первых, сам впрыск производился четырьмя форсунками, а, во-вторых, он проходил по достаточно хитрой траектории, которая обеспечивала максимально быстрое смесеобразование.
Другие хитрости конструкции
Хитрости и особенности двигателя 5ТДФ вовсе не заканчивались на том, что было перечислено выше. Была еще одна изюминка, которая скрывалась в турбокомпрессоре. Сама турбина имела достаточно большие размеры и вместе с компрессором располагалась на валу. Кроме этого, у нее была механическая связь с одним из коленчатых валов двигателя. Данное решение считается гениальным. Во-первых, во время разгона танка компрессор несколько подкручивался за счет крутящего момента вала, что исключало такой недостаток, как турбояма. После того как образовывался достаточно мощный поток выхлопных газов и турбина раскручивалась до значительных оборотов, то мощность, которую она набрала, передавалась, наоборот, коленчатому валу. Все это повышало экономичность силового агрегата, а сама турбина называлась силовой.
Сюда же стоит отнести еще одну важную характеристику двигателя 5ТДФ — он был многотопливным. Другими словами, он мог эксплуатироваться и на дизеле, и на бензине, и на авиационном топливе, и на любой смеси этих видов.
Помимо перечисленных больших конструктивных особенностей, общая конструкция устройства насчитывала еще около полусотни небольших хитростей. Сюда можно было отнести и поршни со вставками из жаропрочной стали, и системы смазки с сухим картером, и много чего еще.
Цели двигателя
Естественно, что после такого технического описания 5ТДФ у многих может возникнуть вопрос о том, зачем же создавался данный силовой агрегат, какие цели преследовали его создатели.
Все эти изменения преследовали всего несколько довольно четко сформулированных целей. Во-первых, мотор должен был быть как можно более компактным, во-вторых, он должен быть экономичным. Однако самое главное — это получить достаточную мощность для работы такого средства, как танк. Важность данных требований объясняется следующим. Компактность может значительно облегчить компоновку танка, а значит, его можно будет быстрее собирать на заводе. Экономичность значительно влияет на автономность танка, то есть уменьшает потребность в частой дозаправке. Мощность же для силового агрегата танка важна тем, что она увеличивала такой важный параметр, как маневренность.
Результаты работы
Все старания конструкторов и ученых, которые разрабатывали данную модель двигателя, вовсе не прошли даром, результат работы был достаточно впечатляющим. Рабочий объем агрегата составлял всего 13,6 литра, но в самом форсированном состоянии он обладал мощностью более чем в 1000 л.с. Так как этот мотор эксплуатировался еще в 60-е годы, то данный результат считался выше всяческих похвал. По своей удельной литровой мощности, а также по габаритной мощности это изобретение превосходило любые другие изобретения любой армии в мире в несколько раз. Из-за его компоновки данное устройство довольно часто называли «чемодан».
Выпускается ли сейчас двигатель 5ТДФ? Справедливо будет сказать, что этот силовой агрегат все же не прижился, несмотря на все свои весомые преимущества. Он был достаточно сложен в исполнении, а к тому же был очень дорогим.
Эксплуатация оборудования
Так как какое-то время данный двигатель все же использовался, то есть определенная инструкция по его применению. Здесь достаточно большое внимание отводится материалам, а именно топливу, которое необходимо заливать. Хоть прибор и является многотопливным, основным видом его рабочей жидкости все же стал дизель. Выбор марки основывался на температуре окружающей среды. Так, если температура была не ниже +5 градусов по Цельсию, то использовалась марка дизельного топлива для быстроходных дизелей ДЛ. При показателях от +5 до -30 градусов по Цельсию использовалась другая марка — ДЗ. Если же в разгар зимы температура опускалась ниже отметки в -30 градусов по Цельсию, то использовалось топливо ДА.
Отдельно стоит добавить, что марка топлива ДЗ могла использоваться еще и в том случае, если температура превышала отметку в +50 градусов. Как и в любом другом двигателе, в этом использовалось масло, которое допускалось всего двух типов. Основным считалось М16-ИХП-3, однако если его не было в наличии или отсутствовала возможность его доливки в нужный момент, то его можно было заменять жидкостью МТ-16п. Однако при замене одного вида смазочного вещества на другое приходилось полностью сливать остаток предыдущего с картерной коробки, а только потом заливать новое. Оппозитные двигатели 5ТДФ были уникальными еще и по этим нескольким причинам.
Работа агрегата на разном топливе
Для того чтобы танк мог работать с разными видами топлива, он был снабжен специальным механизмом управления подачей топлива. Он имел всего два положения, которые могли быть переключены, в нужный момент. Первое положение обеспечивало эксплуатацию при заправке дизельным топливом для быстроходных дизелей, топливом для реактивных двигателей, а также бензином и смесями этих трех видов горючего в любых пропорциях. Второе же положение подразумевало переключение режима работы двигателя на использование только бензина в качестве рабочей смеси.
Есть несколько особенностей, которые возникают при переключении работы на бензин. Во-первых, необходимо не позже чем за 2 минуты до начала работы танка включить насос БЦН техники, а после этого в интенсивном темпе прокачать топливо при помощи ручного подкачивающего насоса. Во-вторых, вне зависимости от окружающей температуры окружающей среды перед запуском нужно произвести двойной впрыск масляной жидкости в цилиндры.
Технические параметры
Стоит сказать, что технические характеристики двигателя 5ТДФ достаточно высокие, а сам по себе он является уже второй модификацией, выпущенной в 1960 году. Первым был 5ТД, выпущенный в 1956 году. Мощность силового агрегата 5ТДФ составляла 700 л.с. Диаметр его цилиндров был равен 120 мм. Ход поршня был равен 2 х 120 мм. Число цилиндров составляло 5, а рабочий объем, как уже говорилось раньше, — 13,6 литра. Частота вращения составляла 2800 об/мин -1 . Есть такой параметр, как габаритная мощность, которая у 5ТДФ составляет 895 л.с./м 3 . Удельная масса силового агрегата составляет 1,47 кг/л.с. Литровая мощность, которая характеризуется, как л.с./л, составляет 52. Это краткое техническое описание двигателя 5ТДФ.
Подробнее — Двигатель 5ТДФ и его проблемы
Самое главное 5ТДФ плавно перешел в новое качество в дизелях серии 6ТД (6ТД-1…6ТД-4) с диапазоном мощностей 1000- 1500 л.с. и превосходящих по ряду основных параметров зарубежные аналоги.
История доводки 5ТДФ
Сравнительный анализ параметров дизелей 6ТД с танковыми дизелями других стран выгодно отличает их по удельным показателям, габаритам и необходимым объемам моторно-трансмиссионных отделений танков. При одинаковой мощности масса дизеля 6ТД-2 на 1000 кг меньше массы дизеля AVDS 1790 (США), литровая мощность — в два раза больше, чем у дизеля C12V (Англия), а габаритная — в 2 — 6 раз больше, чем у дизелей серии AVDS и С12V. Двигатель 6ТД-3 с мощностью 1400 л.с. обладает мощностью сравнимой с лучшими зарубежными образцами ГТД и дизелей, при практически не изменившихся массогабаритных показателях.
1. ПРИНЦИПИАЛЬНАЯ СХЕМА И РАБОЧИЙ ЦИКЛ ДВИГАТЕЛЯ
Двигатель 5ТДФ представляет собой пятицилиндровый, многотоплланый, двухтактный турботюршневой двигатель с противоположно движущимися поршнями жидкостного охлаждения с непосредственным смесеобразованием, прямоточной продувкой, горизонтальным расположением цилиндров и двухсторонним отбором мощности.
Принципиальная схема двигателя показана на рис. 1
В турбопоршневом двигателе в отличие от поршневых двигателей имеются два жестко соединенных между собой лопаточных агрегата — нагнетатель и газовая турбина.
Нагнетатель 2 служит для предварительного сжатия воздуха, подаваемого в цилиндры. Сжатие воздуха необходимо для продувки цилиндров и наддува двигателей. При наддуве увеличивается весовое наполнение цилиндров воздухом. Это позволяет увеличить количество подаваемого в цилиндры топлива и тем самым существенно повысить мощностные показатели двигателя.
Газовая турбина 1 преобразует часть тепловой анергии отработавших в цилиндре газов в механическую, которая используется для привода нагнетателя. Использование энергии отработавших газов в турбине повышает экономичность работы двигателя.
Мощность, развиваемая газовой турбиной, меньше мощности, необходимой для привода нагнетателя. Для компенсации недостающей мощности ,используется часть мощности, развиваемой поршневой частью двигателя. С этой целью нагнетатель через редуктор 3 соединяется с коленчатыми валами двигателя.
Пять цилиндров расположены горизонтально. В стенках каждого цилиндра имеются: с одной стороны — три ряда продувочных окон, с другой — выпускные окна. Продувочные окна служат для пуска в цилиндры свежего заряда (воздуха). Воздух подается к продувочным окнам от нагнетателя через промежуточный объем блока, называемый продувочным ресивером. Выпускные окна 4 обеспечивают выпуск из цилиндра отработавших газов. Выходящие из цилиндра отработавшие газы поступают через выпускной коллектор ,в газовую турбину.
iB каждом цилиндре расположены два противоположно движущихся поршня. Между поршнями при их максимальном сближении образуется камера сгорания. Каждый поршень посредством шатуна связан со своим коленчатым валом. Поршни помимо своего прямого назначения управляют открытием и закрытием продувочных и выпускных окон, т. е. выполняют функции газораспределительного механизма. В связи с этим поршни, управляющие продувочными окнами, а также связанные с ними детали иривошиляо-шатунного механизма называются впускными (продувочными), а поршни, управляющие выпускными окнами, — выпускными.
Коленчатые валы связаны между собой шестернями главной передачи. Направление вращения валов одинаковое — по ходу часовой стрелки оо стороны турбины. При этом выпускной коленчатый вал опережает впускной вал на 10°. При таком смещении коленчатых валов максимальное сближение виуокных и выпускных поршней получается тогда, когда выпускной вал пройдет свою геометрическую внутреннюю мертвую точку (в.м.т.) на 5°, а впускной вал не дойдет до своей внутренней мертвой точки на 5°. Это положение кривошипно-шатунного механизма двигателя соответствует минимальному расстоянию между поршнями и условно называется внутренней объемной мертвой точкой (в.о,м.т.).
Действительная степень сжатия, определяемая по моменту закрытия продувочных окон, составляет 16,i5. Геометрическая степень сжатия равна 20,9.
Угловое смещение коленчатых валов в сочетании с несимметричным расположением продувочных и выпускных окон по длине цилиндра обеспечивает получение требуемых фаз газораспределения, при которых достигаются достаточная очистка цилиндра от отработавших газов и наполнение цилиндра сжатым воздухом.
В связи с угловым смещением коленчатых валов крутящий момент, снимаемый с них, неодинаков и доставляет для впускного вала 30% и для выпускного вала 70% суммарного крутящего момента двигателя. Крутящий момент, развиваемый на впускном валу, передается через шестерни главной передачи на выпускной вал. Суммарный крутящий момент снимается с двух сторон выпускного вала и передается через две зубчатые муфты полужесткого соединения на валы коробок передач объекта.
Рабочий цикл двигателями фазы газораспределения
Рабочие циклы (Двухтактного и четырехтактного двигателя складываются из одних и тех же процессов — наполнения цилиндра свежим зарядом, сжатия рабочего тела, расширения продуктов сгорания и выпуска отработавших газов.
В четырехтактных двигателях, как известно, эти процессы осуществляются за четыре такта — четыре хода поршня или два оборота коленчатого вала. При этом процессы сжатия и расширения, необходимые для преобразования тепла в работу, занимают лишь половину времени всего цикла.
Другую половину цикла занимают вспомогательные процессы впуска и выпуска, обеспечивающие смену рабочего тела в цилиндре. Вследствие этого время, отводимое на рабочий цикл, с точки зрения получения работы используется недостаточно полно.
В двухтактных двигателях рабочий цикл осуществляется за два такта — два хода поршня или один оборот коленчатого вала. Поэтому в двухтактном двигателе число циклов, совершаемых в единицу времени, будет в два раза больше, чем в четырехтактном, что при прочих равных условиях определяет повышение мощности двигателя.
Наиболее существенные отличия двухтактного цикла от четырехтактного связаны с организацией процессов газообмена. В четырехтактных двигателях процессы впуска и выпуска осуществляются в результате насосного действия поршня в течение двух тактов. В двухтактных двигателях время протекания этих процессов ограничено периодами открытого состояния выпускных и продувочных окон. Для того чтобы в условиях ограниченного времени и отсутствия насосного действия поршня обеспечить удовлетворительное протекание процессов газообмена, наполнение и очистка цилиндра двухтактного двигателя осуществляются воздухом, предварительно сжатым до определенного давления специальным агрегатом, который называется нагнетателем.
Рабочий цикл двигателя 5ТДФ иллюстрируется индикаторной диаграммой рабочего цикла (рис. 2), показывающей изменение давления газа в цилиндре в зависимости от положения поршня, диаграммой фаз газораспределения (рис. 3) и схемой характерных положений кривошипно-шатувного механизма двигателя (рис. 4).
Рис 2. Индикаторная диаграмма рабочего цикла.
Рабочий цикл двигателя 5ТДФ протекает в изложенной ниже последовательности.
Такт расширения. Начало такта расширения (конец такта сжатия) соответствует положению кривошипно-шатунного механизма двигателя в в.о.м.т. Состояние газа в цилиндре в этот момент отмечено точкой С индикаторной диаграммы (рис. 2). Такт расширения характеризуется увеличением объема цилиндра, обусловленного, расходящимся движением поршней.
Рис. 3. Диаграмма фаз газораспределения: — при начале отсчета от в.о.м.т.; б — при начале отсчета от в.м.т. выпускного вала.
Рис. 4. Схема характерных положений кривошипно-шатунного механизма.
В начальный период такта расширения в цилиндре идет процесс сгорания топлива, в результате которого химическая энергия топлива превращается в тепловую, вследствие интенсивного тепловыделения температура и давление газов в цилиндре резко увеличиваются (линия С — Z). Максимальное давление газов достигается в точке Z через несколько градусов после в.о.м.т B дальнейшем вследствие постепенного затухания сгорания и быстрого увеличения объема цилиндра давление уменьшается (линия Z — в1).
В ходе процесса расширения часть тепловой энергии газов преобразуется в механическую работу.
Через 106° после в.о.м.т. (111° после внутренней мертвой точки выпускного вала) выпускной поршень начинает открывать выпускные окна (точка в1 на рис. 2, 3 и 4, а). Под действием избыточного давления начинается выпуск из цилиндра отработавших газов. Отработавшие газы по выпускному коллектору поступают в турбину, в которой происходит дальнейшее расширение газов и преобразование их тепловой энергии в механичеакую работу.
Вследствие начавшегося выпуска давление газов в цилиндре уменьшается (линия в1 — П1 на рис. 2).
Через 20° после открытия выпускных окон (126° после в.о.м.т., 131° после в.м.т. выпускного вала) впускной поршень начинает открывать продувочные окна цилиндра (точка П1 на рис. 2, 3 и 4, б). Через постепенно открывающиеся продувочные окна из продувочного ресивера в цилиндр устремляется сжатый воздух, вытесняя из цилиндра отработавшие газы.
Наполнение цилиндра свежим зарядом при одновременном вытеснении отработавших газов называется продуикои цилиндра.
Для улучшения продувки, а также последующего смесеобразования входящему в цилиндр воздуху сообщается вращательное движение, что обеспечивается соответствующим расположением продувочных окон.
По достижении поршнями наружной объемной мертвой точки (в.о.м.т.) такт расширения заканчивается (точка а на рис. 2). Выпускные и продувочные окна цилиндра полностью открыты (рис. 4, в).
Таким образом, в данном такте на основной процесс расширения (линия С — Z — в1 — П1 — а на рис. 2) накладываются в начальный период сгорание топлива, а в конечный — процесс выпуска отработавших газов и наполнения цилиндра свежим зарядом.
Такт сжатия. Такт сжатия характеризуется уменьшением объе-м>а цилиндра и осуществляется при сходящемся движении поршней от Н.О.М.Т. к в.о.м.т. В начале такта при одновременно открытых продувочных и выпускных окнах продолжается продувка цилиндра (линия а — в2). Затем выпускные окна закрываются (точка в2 на рис. 2, 3 и 4, г), что соответствует окончанию выпуска газов и продувки цилиндра. В это же время закрываются и продувочные окна. С момента закрытия продувочных окон (точка П2 на рис. 2, 3 и 4, г) начинается сжатие свежего заряда, в ходе которого давление и температура его в цилиндре увеличиваются (линия П2 — С на рис. 2).
В конце такта сжатия за 19° до в.о.м.т. (или 14° до в.м.т. выпускного вала) топливный насос начинает подачу топлива (точка т на рис. 2 и 3). Впрыск топлива в цилиндр начинается несколько позже. Под действием высокой температуры сжатого в цилиндре воздуха распыленное топливо нагревается, испаряется и вскоре воспламеняется.
Горение топлива, начавшееся в конце сжатия, продолжается в начальный период такта расширения.
Из диаграммы фаз газораспределения (рис. 3) следует, что ‘продолжительность открытия выпускных окон (выпуск) составляет 138° поворота коленчатого вала, а продувочных (впуск) — 118°. Одновременное открытие продувочных и выпускных окон, соответствующее периоду лродугаки, равно 118°.
Процесс газообмена рассматриваемого двигателя можно разделить на два характерных периода (рис. 2 и 3):
свободный выпуск (выпуск до продувки) —линия в1 — П1.
2. УСТРОЙСТВО ДВИГАТЕЛЯ
Двигатель 5ТДФ состоит из кривошипно-шатунного механизма, механизма передач, нагнетателя, турбины, систем питания топливом, управления, смазки, охлаждения, суфлирования и запуска.
Кривошипно-шатунный механизм двигателя состоит из остова, коленчатых валов, шатунов и поршней.
К остову двигателя относятся: блок, корпус передачи, плита турбины, боковые картеры и цилиндры.
В блоке 8 (рис. 5) установлены цилиндры 4 и коленчатые валы — впускной 3 и выпускной 16.
В каждом цилиндре установлено два поршня — впускной 23 и выпускной 22. Поршни посредством шатунов 11 связаны с коленчатыми валами.
Двигатель имеет пять цилиндров. Диаметр цилиндра и ход поршня одинаковы и равны 120 мм.
Сторона двигателя, на которой расположена турбина, считается передней стороной двигателя. С этой стороны ведется счет цилиндров. Направление вращения коленчатых валов — по ходу часовой стрелки с передней стороны двигателя.
Порядок работы цилиндров 1—4—2—б—3.
Коленчатые валы установлены в блоке взаимопараллельно с противоположных сторон в разъемных коренных подшипниках. Крышки (подвески) 2 и 17 коренных подшипников коленчатых валов стянуты с блоком двенадцатью силовыми болтами 19.
Силы давления газов, действующие на впускной и выпускной поршни, передаются через соответствующие шатуны, коленчатые валы и крышки на силовые болты и на них замыкаются. Вследствие этого блок от сил давления газов разгружен.
K блоку шпильками крепятся боковые картеры впускной 1 и выпускной 18. Боковые картеры закрывают внутреннюю полость блока, кроме того, используются для крепления ряда агрегатов двигателя.
В блоке имеются полости для прохода охлаждающей жидкости, а также масляные и топливные каналы. Масло из двигателя сливается через клапан 26, охлаждающая жидкость — через клапан 24. В продольных каналах нижней части блока устанавливаются откачивающие масляные насосы 20 и 25. В цилиндрической расточке в верхней части блока на подшипниках скольжения установлен кулачковый вал 6 привода топливных насосов высокого давления.
В центральном поясе цилиндров устанавливаются форсунки системы литания двигателя топливом и клапан 10 воздухопуска системы запуска двигателя сжатым воздухом.
Продувочные окна, а цилиндра через полость в блоке соединяются с двумя продувочными ресиверами б, выполненными в виде продольных каналов в отливке блока. Продувочные ресиверы связаны с верхним 4 (рис. 6) и нижним 11 выходными патрубками нагнетателя 12.
Рис. 5. Поперечный разрез двигателя по оси 3-го цилиндра и по силовым болтам:
/ и 18 — боковые картеры; 2 и 17— подвески; 3 —впускной коленчатый вал; 4 — цилиндр; 5—стартер-генератор; 6— кулачковый вал; 7—топливный насос высокого давления; 8 — блок; 9 — крышка; 10 — клапан системы запуска двигателя сжатым воздухом; // — шатун; 12 — верхний выпускной коллектор; 13 — водяной коллектор; 14 — масляный центробежный фильтр; 15 -— топливный фильтр тонкой очистки; 16— выпускной коленчатый вал; 19 — силовой болт; 20 и 25 — откачивающие масляные насосы; 21 — нижний выпускной коллектор; 22 — выпускной поршень; 23 — впускной поршень; 24 — клапан слива охлаждающей жидкости; 26 — клапан слива масла; 27— шарнирная опора; а — продувочные окна цилиндра; б — продувочный ресивер; в — выпускные окна цилиндра.
Рис. 6. Двигатель 5ТДФ (вид со стороны нагнетателя):
/ — регулятор; 2 — крышка передачи; 3 — плита передачи; 4 — верхний патрубок нагнетателя; 5 — салун; 6 — датчик тахометра; 7 — компрессор; 8 — опорный бугель; 9 — зубчатая муфта отбора мощности; 10—масляный насос салуна; 11 —нижний патрубок нагнетателя; 12 — нагнетатель.
(Выпускные окна в (рис. 5) цилиндра соединяются с патрубками выпускных коллекторов (верхнего 12 и нижнего 21). Выпускные коллекторы посредством переходных патрубков 5 (р,ис. 7) связаны с патрубками входника турбины 4.
На переднем торце блока крепится плита 6 турбины. Плита турбины используется для установки турбины и водяного насоса 3.
К заднему торцу блока крепится плита 3 (рис. 6) передачи и крышка 2. В плите ,и крышке передачи монтируются шестерни главной передачи и приводов к агрегатам. На плите и крышке передачи устанавливаются нагнетатель, к которому крепится факельный подогреватель воздуха, нагнетающий масляный насос, топливонод-качивающий насос, регулятор / числа оборотов двигателя, сапун 5, ма1сляяый насос 10 сапуна, датчик 6 тахометра, компрессор 7, воздухораспределитель системы запуска сжатым воздухом.
В верхней части двигателя установлены стартер-генератор 5 (рис. 5), топливный фильтр 15 тонкой очистки, топливные насосы 7 высокого давления, закрытые крышкой 9, масляный центробежный фильтр 14, водяной коллектор 13 и агрегаты системы запуска сжатым воздухом — влагомаслоотделитель 1 (рис. 7), дозатор 9 масловпрыска.
В нижней части блока в продольных каналах устанавливаются два откачивающих насоса 7. Двигатель соединен с трансмиссией объекта с помощью двух зубчатых муфт 9 (рис. 6), установленных на концах выпускного коленчатого вала.
Для крепления двигателя используются два опорных бугеля 8, закрепленных на блоке и боковых картерах в местах выхода концов выпускного коленчатого вала, и шарнирная опора 27 (рис. 5), установленная ,на ,нижней части бакового картера продувочной стороны. На бугель со стороны турбины три монтаже двигателя в объект устанавливаются в проточку два стальны/х полукольца, которые служат для жесткой фиксации и двустороннего (вдоль оси выпускного коленчатого вала) !направления температурных удлинений двигателя относительно корпуса объекта.
Подвижные элементы шарнирной опоры обеспечивают температурные удлинения двигателя вдоль оси коленчатых валов и в перпендикулярном направлении, т. е. в сторону впускного коленчатого вала.
3. СВЕДЕНИЯ ПО ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ
Применяемые эксплуатационные материалы
Основным, видом топлива для питания двигателя является топливо для быстроходных дизелей ГОСТ 4749—73:
при температуре окружающей среды не ниже +5°С — марки ДЛ;
при температуре окружающей среды от +5 до —30°С — марки ДЗ;
при температуре окружающей среды ниже -30°С — марки ДА.
В случае необходимости допускается при температуре окружающей среды выше +50°С применять топливо марки ДЗ.
Кроме топлива для быстроходных дизелей двигатель может работать на топливе для реактивных двигателей TC-1 ГОСТ 10227—62 или автомобильном бензине А-72 ГОСТ 2084—67, а также смесях применяемых топлив в любых пропорциях.
Для смазки двигателя применяется масло М16-ИХП-3 ТУ 001226—75. В случае отсутствия этого масла допускается применение масла МТ-16п.
При переходе с одного масла на другое остатки масла из кар-терной полости двигателя и масляного бака машины необходимо слить.
Смешивание применяемых масел между собой, а также применение других марок масел запрещаются. Допускается смешивание в масляной системе несливаемого остатка одной марки масла с другой, вновь заправленной.
При сливе температура масла должна быть не ниже +40°С.
Для охлаждения двигателя при температуре окружающей среды не ниже +5 °С применяется чистая пресная вода без механических примесей, пропущенная через специальный фильтр, придаваемый в ЭК машины.
Для предохранения двигателя от коррозии и «акипеобразова-ния в воду, пропущенную через фильтр, добавляют 0,15% трехкомпонентной присадки (по 0,05% каждого из компонентов).
Присадка состоит из тринатрий фосфата ГОСТ 201—58, хромпика калиевого ГОСТ 2652—71 и нитрита натрия ГОСТ 6194—69 необходимо предварительно растворить в 5—6 л воды, пропущенной через химический фильтр и подогретой до температуры 60—80°С. В случае дозаправки 2—3 л разрешается (разово) применять воду без присадки.
Засыпать антикоррозионную присадку непосредственно в систему запрещается.
При отсутствии трехкомпонентной присадки допускается применение чистого хромпика 0,5%.
При температуре окружающего воздуха ниже +50°С следует применять низкозамерзающую жидкость (антифриз) марки «40» или «65» ГОСТ 159—52. Антифриз марки «40» применяется при температуре окружающего воздуха до —35°С, при температуре ниже — 35 °С — антифриз марки «65».
Двигатель заправлять топливом, маслом и охлаждающей жидкостью с соблюдением мер, предотвращающих попадание механических примесей и пыли, а в топливо и масло, кроме того, влаги.
Заправлять топливо рекомендуется с помощью специальных топливозаправщиков или штатного топливозаправочного устройства (при заправке из отдельных емкостей).
Заправлять топливо необходимо через фильтр с шелковым полотном. Заправлять масло рекомендуется с помощью специальных маслозаправщиков. Масло, воду и низкозамерзающую жидкость заправлять через фильтр с сеткой № 0224 ГОСТ 6613—53.
Заправлять системы до уровней, предусмотренных инструкцией по эксплуатации машины.
Для полного заполнения объемов систем смазки и охлаждения необходимо после заправки на 1—2 мин запустить двигатель, после чего проверить уровни и при необходимости дозаправить системы,
В процессе эксплуатации необходимо контролировать количество охлаждающей жидкости и масла в системах двигателя и поддерживать их уровни IB заданных пределах.
Не допускать работу двигателя при наличии в баке системы смазки двигателя менее 20 л масла.
При понижении уровня охлаждающей жидкости вследствие испарения или утечек в систему охлаждения доливать соответственно воду или антифриз.
Охлаждающую жидкость и масло сливать через специальные сливные клапаны двигателя и машины (котел подогрева и масляный бак) с помощью шланга со штуцером при открытых заправочных горловинах. Для полного удаления остатков воды из системы охлаждения во избежание ее замерзания рекомендуется систему пролить 5—6 л низкозамерзающей жидкостью.
Особенности работы двигателя на различных видах топлива
Работа двигателя на различных видах топлива осуществляется механизмом управления подачей топлива, имеющим два положения установки рычага многотопливности: работа на топливе для быстроходных дизелей, топливе для реактивных двигателей, бензине (со снижением мощности) и их смесях в любых пропорциях; работа только на бензине.
Эксплуатация на других видах топлива при этом положении рычага категорически запрещается.
Установка механизма управления подачей топлива из положения «Работа на дизельном топливе» в положение «Работа на бензине» осуществляется вращением регулировочного винта рычага многотопливности по ходу часовой стрелки до упора, а из положения «Работа на бензине» в положение «Работа на дизельном топливе» — вращением регулировочного винта рычага многотопливности против хода часовой стрелки до упора.
Особенности запуска и эксплуатации двигателя при работе на бензине. Не менее чем за 2 мин до запуска двигателя необходимо включить насос БЦН машины и интенсивно прокачать топливо ручным подкачивающим насосом машины; во всех случаях независимо от температуры окружающего воздуха перед запуском производить двойной впрыск масла в цилиндры.
Бензиновый центробежный насос машины должен оставаться включенным на протяжении всего времени работы двигателя на бензине, его смесях с другими топливами и при кратковременных остановках (3—5 мин) машины.
Минимально устойчивые обороты на холостом ходу при работе двигателя на бензине составляют 1000 в минуту.
4. ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ
О достоинствах и недостатках данного двигателя вспоминает С. Суворов, в своей книге «Т-64».
На танках Т-64А, выпускаемых с 1975 года, было усилено и бронирование башни за счет применения корундового наполнителя.
На этих машинах также была увеличена емкость топливных баков с 1093 л до 1270 л, вследствие чего сзади на башне появился ящик для укладки ЗИП. На машинах прежних выпусков ЗИП размещался в ящиках на правой надгусеничной полке, где и установили дополнительные топливные баки, подключенные в топливную систему. При установке механиком-водителем топливораспределительного крана на любую группу баков (заднюю или переднюю) топливо вырабатывалось в первую очередь из наружных баков.
В механизме натяжения гусеницы была применена червячная пара, которая позволяла ее эксплуатацию без обслуживания в течение всего срока эксплуатации танка.
Эксплуатационные характеристики этих машины были значительно улучшены. Так, например, пробе до очередного номерного обслуживания был увеличен с 1500 и 3000 км до 2500 и 5000 км для Т01 и ТО соответственно. Для сравнения на танке Т-62 ТО1 ТО2 проводилось через 1000 и 2000 км пробега, а на танке Т-72 — через 1600-1800 и 3300- 3500 км пробега соответственно. Гарантийный срок работы двигателя 5ТДФ был увеличен с 250 до 500 моточасов, гарантийный срок всей машины составил 5000 км пробега.
Но училище — это только прелюдия, основная эксплуатация началась в войсках, куда я попал после окончания училища в 1978 году. Перед самым выпуском до нас довели приказ Главкома Сухопутных войск о том, что выпускников нашего училища распределять только в те соединения, где имеются танки Т-64. Связано это было с тем, что в войсках имелись случаи массового выхода из строя танков Т-64, в частности, двигателей 5ТДФ. Причина — незнание материальной части и правил эксплуатации этих танков. Принятие на вооружение танка Т-64 было сравнимо с переходом в авиации с поршневых двигателей на реактивные — ветераны авиации помнят, как это было.
Что касается двигателя 5ТДФ, то основных причин выхода его из строя в войсках было две — перегрев и пылевой износ. Обе причины происходили по незнанию или по пренебрежению правил эксплуатации. Основной недостаток этого двигателя — не слишком рассчитан на дураков, иногда требует, чтобы делали то, что написано в инструкции по эксплуатации. В мою бытность уже командиром танковой роты один из моих
командиров взводов, выпускник Челябинского танкового училища, готовившего офицеров на танки Т-72 как-то начал критиковать силовую установку танк Т-64. Не нравился ему двигатель и периодичность его обслуживания. Но когда ему был задан вопрос «А сколько раз за полгода вы на своих трех учебных танках открывали крыши МТО и заглядывали в мотор но-трансмиссионное отделение?» Оказалось, что ни разу. И танки ходили, обеспечивали боевую подготовку.
И так по порядку. Перегрев двигателя происходил по нескольким причинам. Первая — механик забывал снять коврик с радиатора и затем не смотрел на приборы, но такое бывало очень редко и, как правило, зимой. Вторая, и основная — заправка охлаждающей жидкостью. По инструкции положено заливать воду (в летний период эксплуатации) с трехкомпонентной
присадкой, причем вода должна заливаться через специальный сульфофильтр, которым машины ранних выпусков комплектовались все, а на новых машинах такой фильтр выдавался один на роту (10-13 танков). Выходили из строя двигатели, в основном, танков учебной группы эксплуатации, эксплуатировавшихся минимум пять дней в неделю и находящихся обычно на полигонах в полевых парках. При этом механики-водители «учебники» (так называли механиков учебных машин), как правило, трудяги и добро-
совестные парни, но не знавшие до тонкостей устройства двигателя, могли себе позволить иногда залить воды в систему охлаждения просто из-под крана, тем более что сульфофильтр (который один на роту) хранился обычно на зимних квартирах, где-нибудь в каптерке зампотеха роты. Результат — образование накипи в тонких каналах системы охлаждения (в районе камер сгорания), отсутствие циркуляции жидкости в самом нагреваемом месте двигателя, перегрев и выход двигателя из строя. Образование накипи усугубляло и то, что вода в Германии очень жесткая.
Один раз в соседнем подразделении был выведен двигатель по причине перегрева по вине механика-водителя. Обнаружив небольшую течь охлаждающей жидкости из радиатора, он по совету одного из «знатоков» добавить в систему горчицы купил пачку горчицы в магазине и всю ее высыпал в систему, в результате — засорение каналов и выход двигателя из строя.
Бывали еще и другие сюрпризы с системой охлаждения. Вдруг начинает выгонять охлаждающую жидкость из системы охлаждения через паровоздушный клапан (ПВК). Разобрались и с этим. Дело в том, что двигатель 5ТДФ имеет горизонтальное расположение поршней, и соответственно рубашка охлаждения цилиндров расположена вокруг них, т.е. и сверху, и снизу. Через рубашку охлаждения в каждый цилиндр вкручены по четыре топливные форсунки (две сверху, две снизу) с прокладками из жаропрочной резины.
и двигатель перестанет заводиться. Некоторые, не разобравшись в чем дело, пытаются завести его с буксира — результат разрушение двигателя. Таким образом мой зампотех батальона сделал мне «подарок» к Новому году, и мне пришлось менять двигатель 31 декабря. До Нового года я успел, т.к. замена двигателя на танке Т-64 процедура не очень сложная и, самое главное, не требует центровки при его установке. Больше всего времени при замене двигателя на танке Т-64, как и на всех отечественных танках, занимает процедура слива и заправки масла и охлаждающей жидкости. Если бы на наших танках вместо дюритных соединений трубопроводов стояли разъемы с клапанами, как на «Леопардах» или «Леклерках», то замена двигателя на танках Т-64 или Т-80 по времени занимала бы не больше, чем замена всего силового блока на западных танках. Так, например, в тот памятный день 31 декабря 1980 г. после слива масла и охлаждающей жидкости мы с прапорщиком Е. Соколовым «выкинули» двигатель из МТО всего за 15 минут.
Вторая причина выхода двигателей 5ТДФ из строя — это пылевой износ. Система очистки воздуха Если своевременно не проверять уровень охлаждающей жидкости, а положено проверять перед каждым выходом машины, то может настать такой момент, когда в верхней части рубашки охлаждения жидкость будет отсутствовать, и происходит местный перегрев. При этом самое слабое место форсунка. В этом случае горят прокладки форсунки либо выходит из строя сама форсунка, затем через трещины в ней или сгоревшие прокладки газы из цилиндров пробиваются в систему охлаждения, и под их давлением жидкость выгоняется через ПВК. Все это не смертельно для двигателя и устраняется при наличии в подразделении знающего человека. На обычных рядных и V-образных двигателях в аналогичной ситуации «ведет» прокладку головки блока цилиндров, и работы в этом случае будет побольше.
Если в такой ситуации двигатель остановить и не принять никаких мер, то через некоторое время цилиндры начнут заполняться охлаждающей жидкостью, двигателя представляет собой инерционную решетку и циклонный воздухоочиститель. Воздухоочиститель согласно инструкции по эксплуатации промывается по необходимости. На танках типа Т-62 он промывался зимой через 1000 км пробега, а летом через 500 км. На танке Т-64 — по необходимости. Вот здесь-то и камень преткновения — некоторые приняли это как то, что можно его вообще не промывать. Необходимость же возникала тогда, когда в циклоны попадало масло. И если хоть в одном из 144 циклонов есть масло, то воздухоочиститель надо промывать, т.к. через этот циклон в двигатель попадает неочищенный воздух с пылью, и далее, как наждаком, стираются гильзы цилиндров и кольца поршней. Двигатель начинает терять мощность, увеличивается расход масла, а потом и вовсе перестает запускаться.
Проверить попадание масла в циклоны нетрудно — достаточно посмотреть входные отверстия циклонов на воздухоочистителе. Обычно смотрели на патрубок выброса пыли из воздухоочистителя, и если на нем обнаруживали масло, то тогда смотрели и воздухоочиститель, и если надо, то промывали. Откуда же попадало масло? Все просто: заливная горловина маслобака системы смазки двигателя расположена рядом с сеткой воздухозаборника. При дозаправке маслом обычно используется лейка, но т.к. опять же на учебных машинах лейки, как правило, отсутствовали (кто-то терял, кто-то положил на гусеничную ленту, забыл и поехал через нее и т.д.), то механики заливали масло просто из ведер, при этом масло проливалось, попадало сначала на сетку воздухозаборника, а затем и в воздухоочиститель. Даже заправляя масло через лейку, но в ветреную погоду, масло ветром забрызгивало на сетку воздухоочистителя. Поэтому со своих подчиненных я требовал при заправке масла стелить на сетку воздухозаборника коврик из ЗИпа танка, в результате чего избегал неприятностей с пылевым износом двигателя. При этом надо отметить, что условия запыленности в Германии в летнее время были самые что ни есть суровые. Так, например, во время дивизионных учений в августе 1982 года при совершении марша по лесным просекам Германии из-за висевшей пыли не было даже видно, где заканчивается ствол пушки собственного танка. Дистанцию между машинами в колонне выдерживали буквально нюхом. Когда до впередиидущего танка оставалось буквально несколько метров, то можно было различить запах его выхлопных газов и вовремя затормозить. И так 150 километров. После совершения марша всё: танки, люди и их лица, комбинезоны и сапоги были одного цвета — цвета дорожной пыли.
Модернизированный двигатель 5ТДФМ
Установка двигателя 5ТДФМ требует замены штатного воздухоочистителя на новый и доработки выпускной системы. Модернизация осуществляется путем замены двигателя 5ТДФ на двигатель 5ТДФМ, установки нового воздухоочистителя с увеличенным расходом воздуха для питания двигателя и доработки выпускной системы.