Меню

Двигатель 127 вольт схема подключение

Питание двигателя на 127 В напряжением 220 В с реверсом

У многих радиолюбителей пылятся в загашниках морально устаревшие, но вполне исправные электродвигатели, питающиеся напряжением 127 В. В основном это двигатели от проигрывателей и магнитофонов. Они бесшумны, невелики по размерам, обладают неплохой (относительно) мощностью. Вот бы такой, скажем, в вентилятор, но где взять 127 В? Использовать трансформатор? Необязательно. Попробуем включить достаточно популярный двигатель ЭДГ-2 в сеть 220 В без дополнительного «железа». Типовая схема включения будет выглядеть так:

А теперь включим его в сеть 220 В:

Обратите внимание, у этого двигателя обмотки неидентичны, поэтому реверсировать его нужно не переключением фазосдвигающего конденсатора, а сменой полярности одной из обмоток.

Теперь то же самое проделаем с еще одним двигателем – РД-09. Так он будет работать от 127 В:

В схемах нужно использовать конденсатор, специально рассчитанный на работу в цепях переменного тока, например, МБЧГ на напряжение не ниже 250 В. Конденсаторы общего применения (К73-17 и др.) должны быть рассчитаны на напряжение не ниже 400 В. Естественно, использование керамических и оксидных конденсаторов недопустимо. Таким же образом можно подключить к сети 220 В и другие асинхронные двигатели, рассчитанные на 127 В. Подбирать фазосдвигающий или гасящий конденсатор следует при рабочей механической нагрузке на вал. При этом нужно обязательно убедиться в надежном пуске и отсутствии перегрева обмоток.

Двигатель 127 вольт схема подключение

Для реализации одной из моих задумок понадобился маломощный двигатель, работающий от сети. По параметрам мне подошел синхронный двигатель СД-10, который был в наличии. Единственным препятствием перед использованием стал тот факт, что он был расчитан на работу от переменного тока, напряжением 127 вольт.

Поискав в интернете переработку данного синхронного двигателя СД-10 для использования от сети 220 вольт, информации никакой не нашел. Зато кое-какая информация нашлась на маломощный двигатель РД-09. Сделав аналогичную переделку для своего двигателя СД-10 и подобрав номиналы конденсаторов, удалось добиться увереного запуска и стабильной работы двигателя.

Гасящий конденсатор С2 следует начинать подберать с малых значений (с 0,5-1uF). При правильно подобраном конденсаторе напряжение на сетевой обмотке (С1-С2) двигателя должно быть приблизительно равно 127 вольтам. Т.к. у меня напряжение бытовой сети слегка занижено, то емкость С2, в моем случае, составляет 5uF. При других показаниях напряжения сети, емкость может быть 4uF и менее.

Пусковой конденсатор С1 также нужно подбирать с малых значений. Конденсатор со слишком малой емкостью не обеспечивает надежного запуска двигателя, с избыточной – может привести к перегреву обмотки двигателя.

Корректировать емкости конденсаторов нужно после оказания на вал двигателя механической нагрузки штатного режима работы. Конденсаторы следует использовать только те, которые расчитаны на работу с напряжение свыше 250 вольт в цепях переменного тока. Керамику и оксидные — использовать нельзя.

Двигатель 127 вольт схема подключение

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Как подключить двигатель на 127 В к сети 220 В

У многих радиолюбителей имеются асинхронные электродвигатели от морально и физически устаревших проигрывателей, магнитофонов, самописцев, электрических печатающих машинок и других бытовых и промышленных приборов. Они могли бы найти применение во многих самодельных конструкциях, не будь рассчитаны на питание редко встречающимся сегодня напряжением 127 В, 50 Гц. Покажем на примере широко распространенных в прошлом двигателей РД-09 и ЭДГ-2, каким образом подключить их к сети 220 В без каких-либо дополнительных элементов.

Двухфазные асинхронные редукторные электродвигатели РД-09 на 127 В широко использовали в промышленных самопишущих измерительных приборах как для перемещения пишущего узла, так и для протягивания бумажной ленты. Они рассчитаны на круглосуточную работу, отличаются надежностью и неприхотливостью.

Известны многочисленные модификации этих двигателей, различающиеся передаточным числом встроенного редуктора и частотой вращения выходного вала от нескольких оборотов в секунду до 1. 2 в минуту. Момент на валу РД-09 вполне достаточен, например, для закрывания и открывания штор.

Двигатель имеет две обмотки, одну из которых включают в сеть напряжением 127 В непосредственно, а другую — через фазосдвигающий конденсатор С1 (рис. 1). При необходимости с помощью переключателя SA1 изменяют направление вращения вала.

Обычно рекомендуют подключать такой двигатель к сети 220 В о схеме, показанной на рис. 2. Емкость дополнительного гасящего конденсатора С2 выбирают такой, чтобы напряжение на обмотке 3-4 двигателя М1 осталось приблизительно равным номинальному (127 В).

Немного изменив исходную схему и подключив фазосдвигающий конденсатор С1 не последовательно с обмоткой двигателя, а параллельно ей, как показано на рис. 3, можно обойтись без дополнительного конденсатора. Критерий подборки конденсатора С1 остается таким же, как и С2 в предыдущем случае.

Другой пример — широко распространенный в свое время в бытовой звуковоспроизводящей аппаратуре двигатель ЭДГ-2. Благодаря низкому уровню шума при довольно высокой частоте вращения ротора (около 3000 мин»1) его целесообразно использовать для изготовления вентиляторов и насосов небольшой производительности. На рис. 4 показана схема включения этого двигателя в сеть 127 В, а на рис. 5 — в сеть 220 В.


(нажмите для увеличения)

Две его обмотки неидентичны, поэтому оптимальная емкость фазосдвигающего конденсатора зависит от того, к какой из обмоток он подключен. По этой причине двигатель ЭДГ-2 реверсируют не переключением фазосдвигающего конденсатора, а меняя местами выводы одной из обмоток.

Читайте также:  Фольксваген пассат руководство по ремонту двигателя

Во всех рассмотренных схемах следует применять конденсаторы, специально предназначенные для работы в цепях переменного тока, например, МБГЧ на напряжение не менее 250 В. Конденсаторы К73-17 или другие общего применения должны быть рассчитаны на напряжение не менее 400 В. Недопустимо использовать оксидные или керамические конденсаторы.

Аналогичным образом подключают к сети 220 В и другие асинхронные двигатели, рассчитанные на напряжение 127 В. Подбирать фазосдвигающий или гасящий конденсатор следует при рабочей механической нагрузке на вал двигателя. При этом обязательно следует убедиться в надежности пуска двигателя ив отсутствие перегрева его обмоток.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

Комментарии к статье:

Гость
Спасибо, очень прекрасное объяснение [up]

Подключение трехфазного двигателя к однофазной сети без потери мощности

Особенность работы в “Звезде”

В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или
отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.

К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)

Подключение треугольником

Схема «треугольник» отличается от предыдущей тем, что обмотки соединяются последовательно. Тогда конец первой обмотки соединяется с началом второй, конец которой – с началом третьей, вывод которой – с началом первой.

Преимущество способа заключается в том, что он обеспечивает достижение максимальной мощности. Но при запуске двигателя образуются высокие пусковые токи, которые могут привести к уничтожению изоляции. Поэтому не рекомендуется подавать высокое напряжение.

Треугольное соединение используется для подключения однофазного двигателя к однофазной сети 127 или 220 Вольт. Она же применяется для трехфазных электродвигателей с двумя номинальными напряжениями при включении в однофазную сеть (только на меньшее значение):

  • Мотор 220 380 к сети с напряжением 220 Вольт;
  • Мотор 127 220В к сети с вольтажом 127 единиц.

С технической точки зрения для высокого значения номинального напряжения схема «треугольник» тоже подходит. Но ввиду высоких пусковых токов это нецелесообразно и очень опасно: изоляция сгорит от тепла, выделяемого обмоткой.

Изготовление

Сначала проводится равномерная намотка проволочки. Её аккуратно накручивают на катушку. Чтобы облегчить процесс, можно воспользоваться основой, взяв, к примеру, аккумуляторную батарейку. Плотность намотки не должна быть большой, но и лёгкая тоже не нужна.

На следующем этапе изготавливают частотник для электродвигателя своими руками. Делается конструкция просто. В 5 пластинах электродрелью просверливается отверстие, потом следует их надеть на велосипедную спицу, которая берётся в качестве оси. Пластины прижимаются, при этом их фиксация проводится с помощью изоленты, излишек обрезается с помощью ножа канцелярского.

Когда через катушку проходит электрический ток, частотником создаётся возле себя магнитное поле, исчезающее после отключения электротока. Воспользовавшись этим свойством, следует проводить притягивание и отпускание деталей из металла, при этом проводят включение и отключение электротока.

Как устроен однофазный электродвигатель

Конструктивно электромотор, рассчитанный на применение в бытовых, не промышленных масштабах, мало чем отличается от своих “собратьев” (разве что размером), имеет те же элементы:

  • Корпус;
  • Статор (обмотки + сердечник);
  • Ротор;
  • Вал со шпоночными канавками спереди и под вентилятор сзади;
  • Герметичные крышки с подшипниками;
  • Клеммная коробка.
  • Индукционное устройство для запуска.

Ротор имеет короткозамкнутые витки. Как и сердечник статора, его корпус сделан из электротехнической стали высокого качества.

Рассматривая фото, можно заметить, что коллекторный однофазный электродвигатель отличается от асинхронного прямоугольной формой корпуса, наличием графитно-медных щеток.

Строение его немного отличается от обычного асинхронного однофазного двигателя. Принцип работы – также. Напряжение подается на щетки, а через них – на якорь, который вращает вал в подшипниках. В асинхронных – наоборот: магнитное поле статора вращает ротор!

Скорость вращения можно регулировать при помощи специального устройства – реостата. В то время как асинхронный двигатель работает в пределах максимальных оборотов, которые трудно, порою невозможно, плавно, без рывков, контролировать – уменьшать, увеличивать после разгонки.

Подключение звездой

При соединении обмоток статора асинхронного двигателя по схеме «звезда их концы объединяют в одной точке. При питании от трехфазной электролинии вольтаж подается на их начала.

Способ подходит для подключения трехфазных двигателей к трехфазной линии по большему напряжению. Например:

  • Двигатель 380 к сети 380 Вольт;
  • Двигатель 220В к сети под напряжением 220 единиц;
  • Двигатель 127 220В к сети 220 Вольт;
  • Двигатель 220 380 к сети 380 Вольт.

Преимущество метода заключается в плавном запуске мотора и его мягкой работе. Это благоприятно сказывается на его эксплуатационном сроке. Но в этом кроется недостаток: схема «звезда» несет потери по мощности в полтора раза по сравнению с подключением способом «треугольник».

Остается вопрос: можно ли, и если да, то, как подключить асинхронный двигатель на 220 или 127 Вольт (низшие значения вольтажа из двух номинальных) звездой? Да, можно. Но это будет невыгодно из-за высокой потери мощности, которая прямо пропорциональна подающемуся напряжению и зависит от способа включения. Поэтому потери мощности по специфике соединения будут сочетаться с потерями по вольтажу (вместо 380 Вольт будет 220В).

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника

В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Читайте также:  Автомобиль дэу нексия ремонт двигателя

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “Пуск вперед” и “Пуск назад“, выключение – одной, общей кнопкой “Стоп” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”

Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

Электрическая схема управления гидравликой

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – .

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Изготовление токового прерывательного приспособления

Взяв пластинку небольших размеров, проводят её крепление на оси, для надёжности прижав конструкцию с помощью плоскогубцев. Далее проводят изготовление обмотки якоря электродвигателя своими руками. Для этого необходимо взять нелакированную медную проволоку.

Проводят подключение одного её конца к пластинке из металла, установив на её поверхности ось. Электроток будет проходить через всю конструкцию, состоящую из пластины, металлического прерывателя и оси. При контакте с прерывателем происходит замыкание и размыкание цепи, что даёт возможность подключения электромагнита и его последующего отключения.

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь!

ПУСК ЭЛЕКТРОДВИГАТЕЛЯ ЧЕРЕЗ ЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя. По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:

  • входное напряжение в нем выпрямляется;
  • затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.

Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.. Как осуществляется плавный пуск через частотный преобразователь?

Как осуществляется плавный пуск через частотный преобразователь?

В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения. Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.

Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Читайте также:  Сломался подъемник с машиной

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.
  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

А это более наглядная картинка:

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

Ток для расчёта мы возьмём с шильдика двигателя:

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Из-за чего отказывает электродвигатель?

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

Какие знания потребуются

В школе на уроках физики все мы изучали действие электродвигателя и его устройство. Но навряд ли по данным знаниям можно понять, как подключать его к сети. Да и школьные знания уже давно подзабыты.

Именно поэтому есть определенные правила и теоретические знания, которые необходимы будут в этом процессе. Вот, что потребуется изучить:

В первую очередь потребуется изучить всю конструкцию электродвигателей разных моделей.
Так же необходимо будет узнать, какие есть варианты схем способов подключения двигателя и для чего необходима обмотка.
Еще одно, что важно знать в таком случае — устройство вспомогательных компонентов двигателя.

Ранее все данные можно было узнать о двигателе по прикрепленной на нем табличке. Там даже указывалась схема подключения прибора.

Однако в настоящее время не на всех моделях можно отыскать даже номер и серию мотора. Таким образом, все это придется узнавать из справочника или в сети и с применением мультиметра.

Прибор укажет на наличие или отсутствие короткого замыкания по корпусу устройства.

Особенности устройства

Конструкция асинхронного двигателя достаточно проста. Ее базовые элементы – это статор и ротор.

Статор имеет вид цилиндра, собранного из стальных листов. Обмотки находятся в пазах сердечника. Обычно для них используют обыкновенный силовой кабель. Оси обмоток располагаются под углом 120 градусов по отношению друг к другу. Соединение их концов может быть в треугольной форме или в форме звезды – это зависит от напряжения.

Далее поговорим о роторе. Выделяют две разновидности – короткозамкнутый ротор и фазный. Как показывают фото асинхронных двигателей, первая разновидность ротора имеет вид наборного стального сердечника. Его пазы заливают алюминием. Полученные стержни накоротко замыкают особыми торцевыми кольцами.

Фазный ротор характеризуется трёхфазной обмоткой, схожей со статорной. Чаще всего концы обмоток образуют форму звезды, а свободные подводят к специальным контактным кольцам.

Подобная конструкция даёт возможность при необходимости осуществить ввод добавочного резистора, который позволяет менять активное сопротивление. Это необходимо, если нужно уменьшить значение пускового тока.

В основе принципа работы электродвигателя асинхронного типа лежит применение вращающегося магнитного поля. Оно образуется в статоре, взаимодействует с токами, наводящимися им же в роторе. Важный нюанс: возникновение вращающегося момента возможно только при разных частотах, с которыми вращаются магнитные поля.

Adblock
detector