Меню

Atmega схема для управления шаговым двигателем

Подключение шагового двигателя к Ардуино

Шаговый двигатель 28byj-48 Arduino ► предназначен для перемещения объекта на заданное количество шагов вала. Рассмотрим управление шаговым двигателем от Ардуино

Шаговый двигатель (stepper motor) предназначен для точного позиционирования или перемещения объекта на заданное количество шагов вала. Плата Arduino может управлять шаговым двигателем с помощью драйвера и библиотеки stepper.h или accelstepper.h. Рассмотрим принцип работы и схему подключения шагового двигателя к Arduino Uno / Nano, а также разберем скетч для управления шаговым мотором.

Принцип работы шагового двигателя

В зависимости от конструкции, сегодня применяются три вида шаговых двигателей: с постоянным магнитом, с переменным магнитным сопротивлением и гибридные двигатели. У двигателей с постоянным магнитом число шагов на один оборот вала доходит до 48, то есть один шаг соответствует повороту вала на 7,5°. Гибридные двигатели обеспечивают не меньше 400 шагов на один оборот (угол шага 0,9°).

Фото. Устройство шагового мотора в разрезе

Подсчитав количество сделанных шагов, можно определить точный угол поворота ротора. Таким образом, шаговый двигатель является сегодня идеальным приводом в 3D принтерах, станках с ЧПУ и в другом промышленном оборудовании. Это лишь краткий обзор устройства и принципа работы stepper motor, нас больше интересует, как осуществляется управление шаговым двигателем с помощью Ардуино.

Драйвер шагового двигателя Ардуино

Шаговый двигатель — это бесколлекторный синхронный двигатель, как и все двигатели, он преобразует электрическую энергию в механическую. В отличие от двигателя постоянного тока в которых происходит вращение вала, вал шаговых двигателей совершает дискретные перемещения, то есть вращается не постоянно, а шагами. Каждый шаг вала (ротора) представляет собой часть полного оборота.

Фото. Виды драйверов для управления шаговым двигателем

Вращение вала двигателя осуществляется с помощью сигнала, который управляет магнитным полем катушек в статоре драйвера. Сигнал генерирует драйвер шагового двигателя. Магнитное поле, возникающее при прохождении электрического тока в обмотках статора, заставляет вращаться вал, на котором установлены магниты. Количество шагов задаются в программе с помощью библиотеки Arduino IDE.

Схема подключения шагового двигателя 28BYJ-48 к Arduino Uno через драйвер ULN2003 изображена на рисунке ниже. Основные характеристики мотора 28BYJ-48: питание от 5 или 12 Вольт, 4-х фазный двигатель, угол шага 5,625°. Порты драйвера IN1 — IN4 подключаются к любым цифровым выводам платы Arduino Mega или Nano. Светодиоды на модуле служат для индикации включения катушек двигателя.

Как подключить шаговый двигатель к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • драйвер шагового двигателя ULN2003;
  • шаговый двигатель 28BYJ-48;
  • провода «папа-мама».

AVR Урок 18. Подключаем шаговый двигатель. Часть 1

Урок 18

Подключаем шаговый двигатель

Сегодня мы попробуем к микроконтроллеру Atmega8a подключить шаговый двигатель.

Шаговые двигатели – это такие двигатели, которые посредством подачи напряжения на определённую обмотку переводят свой ротор в определённое место, тем самым достигается более точное управление угловой скоростью. Можно также, в принципе, управлять и положением ротора, но это уже как-то больше сервоприводы, с которыми, мы, возможно, тоже, когда-то столкнёмся.

Шаговые двигатели в наше время приобретают всё больший интерес, так как в наш век точной электроники люди что-то мастерят движущееся, наподобие роботов и каких-то умных машин, также доходит дело до определённых летательных аппаратов и прочих устройств.

Поэтому я также не обошел этот вопрос стороной и решил также что-то об этом рассказать и подключить шаговый двигатель к контроллеру и попробовать им поуправлять. Как только мне это удалось, я решил этим поделиться и с вами.

Мне в руки попался именно вот такой вот шаговый двигатель 28-BJ48 компании Kiatronics

Питается данный двигатель от 5 вольт, питание подается попеременно на различные обмотки, которых 4, и если питание снимается с одной обмотки и подается на другую, то ротор. соответственно. устраемляется к ней.

Данные обмотки своими сердечниками в статоре находятся не в 4 местах, а намного чаще, а именно каждая повторяется 2048 раз, поэтому когда мы подаем напряжение на соседнюю обмотку, ротор поворачивается на очень малый угол. А если напряжение подавать ещё и на 2 соседние обмотки, то ротор можно расположить между ними, и количество положений при этом вообще удваивается. А есть вообще микрошаговый режим, когда мы на одну обмотку подаём меньшее напряжение, а на другую большее, то и вообще можно потеряться в количестве шагов и вообще крутить данный шаговый двигатель очень плавно.

Питать двигатель лучше не от ножек контроллера, а лучше через какую-нибудь развязку. Можно использовать мощные транзисторы, но существует специальная микросхема-драйвер для шаговых двигателей. Как правило, выпускается данный драйвер в виде готовых модулей, выглядящих приблизительно вот так вместе с подключенным шаговым двигателем

Читайте также:  Ноут для диагностики автомобилей

Данный модуль представляем собой микросхему ULN2003. Можно использовать ее не только для двигателей. Но мы будем использовать здесь 4 входа и 4 выхода, так как у нашего двигателя 4 провода. каждый из которых подключен к определённой обмотке, а пятый провод является общим. Подключенный таким образом мотор уже не влияет на ножки портов, у которых ограничен максимальный ток и можно уже ничего не бояться на этот счёт. При подключении к ножкам контроллера мы используем входы модуля IN1, IN2, IN3 и IN4, а разъём двигателя просто соединим с разъёмом модуля.

Нарисуем вот такую схему, чтобы лучше понять принцип работы двигателя (чтобы увидеть процесс рисования, смотрите видеоверсию урока, ссылка на которую внизу страницы)

Здесь мы видим 4 катушки, одним выводом которые соединены к общему проводу, а на другие выводы каждой катушки мы будем подавать логические уровни, например на рисунке поданы 1000.

Данные обмотки потом по кругу так циклически и повторяются.

Теперь рассмотрим возможные режимы управления с помощью логических уровней.

1 режим – этот простейший режим, при котором мы по очереди подаём логические единицы или высокие логические уровни на каждую обмотку. Называется он также полношаговый режим или One Phase Step Mode.

Схематично данный режим можно изобразить таким образом

Существует также ещё один интересный режим – это режим когда ротор будет шагать между обмотками, то есть мы единички будем подавать на 2 соседние обмотки

А также есть ещё и третий решим – это полушаговый режим, когда мы уже чередуем комбинации, сначала ротор будет находиться у обмотки, потом наполовину переместится к соседней обмотке, потом совсем к соседней обмотке и т.д. Это полушаговый режим или one and two-phase-on

Вот таких вот три режима существуют. мы остановимся на 3 режиме, так как он будет самый плавный и самый интересный.

На следующем занятии мы соберём всю нашу схему с шаговым двигателем и начнём уже писать какой-то исходный код.

Программатор и шаговый двигатель 28YBJ-48 с драйвером ULN2003 можно приобрести здесь:

Смотреть ВИДЕОУРОК (нажмите на картинку)

БИБЛИОТЕКА ДЛЯ ШАГОВОГО ДВИГАТЕЛЯ ARDUINO

Для подключения шаговых моторов к Arduino нужно использовать драйверы. Очень дешёвые и популярные моторы 28byj-48-5v часто продаются вместе со своим драйвером (транзисторная сборка ULN2003), подключить можно к любым 4-м пинам Ардуино и использовать.

Для работы с большими шаговиками (типа Nema 17) нужно использовать специализированные драйверы, ниже вы найдёте описания и схемы подключения для A4988, DRV8825 и TMC2208, драйверы такого формата подключаются и работают практически одинаково, т.к. разработаны для CNC шилдов и взаимозаменяемы. У этих драйверов нужно настроить ток при помощи крутилки на плате. Это можно сделать “на глаз”, заставив мотор вращаться и регулируя крутилку. Мотор должен вращаться, но не вибрировать как перфоратор и сильно не нагреваться. Лучше настроить ток по опорному напряжению Vref, у каждого драйвера оно считается по своей формуле (см. картинки ниже). Берём ток своего мотора из описания, подставляем в формулу вместо current, считаем, и накручиваем полученное напряжение крутилкой. Для измерения опорного напряжения нужно подключить щупы вольтметра к самой крутилке и пину GND.

Главное преимущество дорогущих драйверов TMC – отсутствие шума/свиста/вибраций при работе, так как драйвер своими силами интерполирует сигнал до микрошага 1/256.

БИБЛИОТЕКА GYVERSTEPPER

GyverStepper v1.8

GyverStepper – производительная библиотека для управления шаговыми моторами

  • Поддержка 4х фазных (шаг и полушаг) и STEP-DIR драйверов
  • Автоматическое отключение питания при достижении цели
  • Режимы работы:
    • Вращение с заданной скоростью
    • Следование к позиции с ускорением и ограничением скорости
    • Следование к позиции с заданной скоростью (без ускорения)
  • Быстрый алгоритм управления шагами
  • Два алгоритма плавного движения:
    • Модифицированный планировщик из библиотеки AccelStepper: максимальная плавность и скорость до 7’000 шагов/сек с ускорением (для активации пропиши дефайн SMOOTH_ALGORITHM )
    • Мой планировщик обеспечивает максимальную производительность: скорость до 30’000 шагов/сек с ускорением (активен по умолчанию). Т.е. на небольшой скорости экономит кучу процессорного времени для других задач.

Поддерживаемые платформы: все Arduino (используются стандартные Wiring-функции)

Версия 1.1: добавлена возможность плавно менять скорость в режиме KEEP_SPEED. Добавлены примеры multiStepper и accelDeccelButton
v1.2 – добавлена поддержка ESP8266
v1.3 – изменена логика работы setTarget(, RELATIVE)
v1.4 – добавлена задержка для STEP, настроить можно дефайном DRIVER_STEP_TIME
v1.5 – пофикшен баг для плат есп
v1.6 – Исправлена остановка для STEPPER4WIRE_HALF, скорость можно задавать во float (для медленных скоростей)

ДОКУМЕНТАЦИЯ

Документация

Инициализация

Библиотека поддерживает два типа драйверов:

  • STEPPER2WIRE – специализированный 2-х проводной драйвер для шагового мотора с протоколом STEP-DIR, например A4988, DRV8825, TMC2208 и прочие.
  • STEPPER4WIRE и STEPPER4WIRE_HALF – 4-х проводной драйвер, т.е. полномостовой (например L298N) или транзисторная сборка (например ULN2003).
    • STEPPER4WIRE управляет мотором в полношаговом режиме (выше скорость и момент).
    • STEPPER4WIRE_HALF – в полушаговом (меньше скорость и момент, но больше шагов на оборот и выше точность).
Читайте также:  Подогрев масла двигателя через пробку

При инициализации указывается тип драйвера, количество шагов на оборот и пины:

  • GStepper stepper(steps, step, dir); // драйвер step-dir
  • GStepper stepper(steps, step, dir, en); // драйвер step-dir + пин enable
  • GStepper stepper(steps, a1, a2, b1, b2); // драйвер 4 пин
  • GStepper stepper(steps, a1, a2, b1, b2, en); // драйвер 4 пин + enable
  • GStepper stepper(steps, a1, a2, b1, b2); // драйвер 4 пин полушаг
  • GStepper stepper(steps, a1, a2, b1, b2, en); // драйвер 4 пин полушаг + enable

Где steps – количество шагов на один оборот вала для расчётов с градусами, step , dir , a1 , a2 , b1 , b2 – любые GPIO на МК, en – пин отключения драйвера EN, любой GPIO на МК. Пин en опциональный, можно не указывать.

Для 4-х пиновых драйверов: a1 и a2 – первая обмотка (первая фаза), b1 и b2 – вторая обмотка (вторая фаза). При использовании мотора 28byj-48 с родным драйвером нужно поменять крайние пины местами (например, подключаем D2-IN1, D3-IN2, D4-IN3, D5-IN4, но в программе меняем 5 и 2: stepper(2048, 5, 3, 4, 2); , потому что на драйвере фазы выведены через одну, вот картинка). При подключении через мостовой драйвер – подключать и указывать пины по порядку выхода фаз из мотора (см. последнюю схему выше).

Количество шагов на оборот нужно для работы функций, которые устанавливают или читают параметр в градусах. Если они не нужны – количество шагов можно поставить любое (единичку). Если нужно – количество шагов нужно указывать с учётом редукторов и микрошагов:

  • Пример 1: есть мотор NEMA 17, он имеет 200 полных шагов на оборот (по документации). Подключен через драйвер с настроенным микрошагом 1/16. При создании объекта библиотеки нужно указать 200*16 шагов.
  • Пример 2: есть мотор 28byj-48-5v, имеет 32 полных шага на оборот и редуктор с соотношением 63.68395:1. Подключен через микросхему ULN2003. Итоговое количество шагов на оборот составляет 63.68395*32 == 2038 для режима полного шага ( STEPPER4WIRE ).
  • Пример 3: подключим тот же самый мотор 28byj-48-5v, но в режиме полушага ( STEPPER4WIRE_HALF ). Количество шагов на оборот удвоится (32*2 == 64) и, с учётом редуктора, станет равным 4076 .

Время шага [NEW!]

Для драйверов STEP-DIR сделана задержка между переключением состояния пина STEP, эта задержка является минимальной, т.е. она может быть больше, чем нужно, но если будет меньше – возможна нестабильная работа драйвера. По умолчанию она составляет 4 микросекунды, но разным драйверам она нужна разная (для других драйверов см. даташит):

  • A4988 – 1 мкс
  • DRV8825 – 4 мкс
  • TB6500 – 1 мкс

Также увеличение задержки может повысить стабильность работы при использовании длинных неэкранированных проводов от микроконтроллера к драйверу (к пину STEP).

Для изменения величины задержки сделай дефайн DRIVER_STEP_TIME перед подключением библиотеки:

Медленные скорости (new!)

В версии 1.6 скорость во всех режимах может быть задана в виде десятичной дроби (тип float ), то есть меньше одного шага в секунду. Минимальная скорость ограничена разрешением используемой в библиотеке micros() и составляет 1 шаг в час. Для удобного задания медленных скоростей появились макросы degPerMinute() и degPerHour() , которые нужно использовать совместно с setSpeedDeg() и setMaxSpeedDeg() :

Тик и тайминги

Самый главный метод библиотеки – tick() , при активной работе мотора его нужно вызывать как можно чаще. Тик имеет встроенный таймер на micros() и работает по нему. Если в коде программы присутствуют задержки на большее время, чем нужно мотору на текущей скорости, скорость мотора будет ограничена этой задержкой.

Узнать минимальный период вызова tick() (при установленной скорости) можно при помощи getMinPeriod() , который вернёт его в микросекундах. Также можно напрямую опрашивать переменную stepTime , в которой хранится текущий период. Эти инструменты можно использовать для организации работы шаговика в прерывании таймера (см. пример timerISR).

Также .tick() возвращает true , если мотор движется к цели или крутится по KEEP_SPEED и false , если мотор остановлен или приехал.

Метод getState() возвращает текущее состояние мотора аналогично tick() .

Смена направления

Можно глобально (для всех режимов) сменить направление вращения мотора при помощи reverse(true) .

Режимы работы

Библиотека имеет два режима работы с мотором, устанавливается при помощи setRunMode(mode) , где mode :

  • FOLLOW_POS – режим плавного движения к заданной позиции с ускорением и ограничением скорости.
  • KEEP_SPEED – режим вращения с заданной скоростью (знак скорости задаёт направление вращения).
Читайте также:  Номер двигателя коррозия ржавчина

Режим FOLLOW_POS

В этом режиме мотор следует на указанную позицию в шагах или градусах. Для её установки есть следующие методы:

  • setTarget(pos) – установка абсолютной целевой позиции в шагах, принимает положительные и отрицательные значения (тип данных long ).
  • setTarget(pos, type) – то же самое, но можно указать тип позиции type – абсолютная ABSOLUTE или относительная RELATIVE .
  • setTargetDeg(pos) – установка абсолютной целевой позиции в градусах, принимает положительные и отрицательные дробные значения (тип данных float ).
  • setTargetDeg(pos, type) – то же самое, но можно указать тип позиции type – абсолютная ABSOLUTE или относительная RELATIVE .

Примечание: абсолютная позиция – говоришь мотору повернуться на 300 шагов, он повернётся на позицию 300. При повторном вызове ничего не произойдёт. Относительная – говоришь повернуться на 300 – он повернётся на 300 относительно текущей позиции. Если вызвать ещё раз через некоторое время – цель сместится относительно текущей позиции вала.

Установленную целевую позицию можно прочитать:

  • getTarget() – возвращает тип данных long
  • getTargetDeg() – возвращает тип данных float

Дополнительно можно настроить максимальную скорость и ускорение при движении к целевой позиции:

  • setMaxSpeed(speed) – установка максимальной скорости по модулю в шагах/секунду, тип данных float . По умолчанию 300.
  • setMaxSpeedDeg(speed) – установка максимальной скорости по модулю в градусах/секунду, тип данных float .
  • setAcceleration(accel) – установка ускорения по модулю в шагах/сек/сек, тип данных float . По умолчанию 300.
  • setAccelerationDeg(accel) – установка ускорения по модулю в градусах/сек/сек, тип данных float .

Примечание: при установке ускорения в ноль 0 мотор будет двигаться к позиции с максимальной скоростью, заданной в setMaxSpeed() .

Также можно вручную установить текущую позицию мотора в шагах и градусах при помощи:

  • setCurrent(long pos);
  • setCurrentDeg(float pos);

Режим KEEP_SPEED

В этом режиме мотор просто крутится с заданной скоростью. Скорость задаётся при помощи

  • setSpeed(speed) – в шагах/секунду, положительные и отрицательные целые значения, тип данных float .
  • setSpeedDeg(speed) – в градусах/секунду, положительные и отрицательные дробные значения, тип данных float .

(New!) Вторым аргументом можно передать включение плавного изменения скорости, по умолчанию стоит false ( NO_SMOOTH ). Смотри пример accelDeccelButton

  • setSpeed(speed, smooth) – в шагах/секунду, положительные и отрицательные целые значения, тип данных float . smooth – SMOOTH или NO_SMOOTH
  • setSpeedDeg(speed, smooth) – в градусах/секунду, положительные и отрицательные дробные значения, тип данных float . smooth – SMOOTH или NO_SMOOTH

Установленную скорость можно прочитать:

  • getSpeed() – возвращает тип данных float
  • getSpeedDeg() – возвращает тип данных float

Алгоритм планировщика скорости

В библиотеке реализовано два алгоритма планирования скорости для режима плавного движения к позиции с ненулевым ускорением:

  • Мой алгоритм: скорость планируется с фиксированным периодом, что сильно разгружает процессор и позволяет работать на скоростях до 30’000 шагов в секунду (полностью загрузив процессор) без наличия посторонних задержек в коде. Сильная экономия процессорного времени оставляет возможность спокойно выполнять параллельно другой код и управлять несколькими моторами в разных режимах на хороших скоростях, и “ещё останется”. Немного “резковат” при торможении. Активен по умолчанию.
  • Модифицированный алгоритм из библиотеки AccelStepper: скорость планируется каждый шаг, что очень сильно нагружает процессор и ограничивает скорость до 7’000 шагов в секунду (полностью загрузив процессор) без наличия посторонних задержек в коде (в оригинальной библиотеке – 5’000 шагов/сек). Разгоняется и тормозит максимально плавно. Для активации нужно прописать дефайн #define SMOOTH_ALGORITHM перед подключением библиотеки в коде (см. пример smoothAlgorithm) или раскомментировать данный дефайн в файле библиотеки GyverStepper.h, находится сразу после описания.

Остановка и сброс

  • stop() – плавная остановка с заданным в setAcceleration() ускорением от текущего положения мотора. Можно вызвать в режиме KEEP_SPEED для плавной остановки вращения! Смотри пример accelDeccelButton
  • brake() – резкая остановка мотора. Если активен autoPower(true) – мотор будет отключен.
  • reset() – brake() + сброс текущей позиции в 0 . Удобно для остановки и калибровки начала координат по концевику (смотри пример endSwitch).

Управление питанием

Питанием мотора/драйвера можно управлять вручную при помощи enable() и disable() . Данные методы включают и выключают пин Enable (если он указан при инициализации), а также снимают и возвращают питание на управляющие выводы (для 4х пинового драйвера).

Поведением пина EN (если он указан при инициализации) можно управлять при помощи invertEn(true) и invertEn(false) . По умолчанию установлено enable(false) переводит пин en в низкое состояние.

В библиотеке реализовано автоматическое управление питанием, включается при помощи autoPower(true) , по умолчанию оно отключено. В режиме FOLLOW_POS при достижении целевой позиции мотор будет автоматически отключен (будет вызван disable() ). При дальнейшей установке новой позиции мотор будет автоматически включен (будет вызван enable() ).

Adblock
detector