Меню

Амперметр для зарядного устройства автомобиля своими руками

Схемы, как сделать зарядное устройство для автомобильного аккумулятора своими руками

Наверное, каждый автомобилист знает, как быстро ломаются зарядки для аккумулятора автомобиля. Если в очередной раз это произошло, пришло время самостоятельно его собрать. Это несложно, даже если нет электротехнических знаний.

Параметры устройства

Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.

Чтобы добиться этих параметров, понадобится:

  1. Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
  2. Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
  3. Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
  4. Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
  5. Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.

Этого достаточно, чтобы собрать простое зарядное устройство.

Схема зарядного устройства для автомобильного аккумулятора

Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.

Простые схемы

Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.

С 1 диодом

Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.

Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.

С диодным мостом

Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.

Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.

Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.

С диодным мостом и конденсатором

Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.

Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.

Схемы с регулировкой

Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.

Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.

Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.

Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.

Подробное видео можно посмотреть ниже.

Порядок сборки зарядного устройства для автомобильного аккумулятора

По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.

Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ. К выводам № 2 нужно припаять сетевой шнур.

Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.

В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.

Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).

Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.

Читайте также:  Какое масло нужно для двигателя крайслер

Автозарядка из блока питания

Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.

В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.

Далее нужно просто действовать по инструкции:

  1. Все провода, кроме желтых и черных, нужно обрезать.
  2. Спаиваем их между собой: желтые с желтыми, черные с черными.
  3. На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
  4. В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
  5. Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.

В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.

Амперметр для автомобильного зарядного устройства на ATtiny13

Как-то раз в руки к автору этих строк попало весьма интересное устройство, рожденное в СССР, в далеком 1976 году – его просто отдали за ненадобностью.

Звали это устройство АДЗ-101У2, и оно представляло собой типичный образчик советского конструктивизма: тяжелый двадцатикилограммовый “чемодан”, с ручкой для переноски в верхней части и мощным однофазным трансформатором внутри. Но самое интересное, что у этого “чемодана” напрочь отсутствовала задняя панель – и вовсе не потому, что прибор успел ее “посеять”, нет. А дело здесь было в том, что обе его панели являлись… передними!

С одной своей стороны “чемодан” представлял собой сварочный аппарат, а с другой – зарядное устройство для автомобильных аккумуляторов. И если как “сварочник” он особых эмоций не вызвал – еще бы, ведь всего-то 50А переменного тока; то вот “зарядник” – вещь в хозяйстве, безусловно, нужная. Испытания прибора подтвердили его полную боеспособность (даже сварка работала!), но без недостатков, разумеется, не обошлось. Суть проблемы состояла в том, что штатный амперметр “зарядника” скрылся в неизвестном направлении, и предыдущий владелец аппарата подыскал ему вполне “равноценную” замену – автомобильный амперметр, скрученный с какого-то военного грузовика, и имеющий очень “информативную” шкалу в ±30 А!

Понятно, что следить за зарядом аккумулятора (а ток зарядки – всего лишь 3-6 А!) при помощи такого вот прибора, мягко говоря, проблематично – как будто и нет его вовсе… Поэтому решено было заменить “грузовиковый показометр” на какой- либо более или менее адекватный прибор, с внятной шкалой на 0-10 А. Идеальным кандидатом на эту роль представлялся стрелочный щитовой амперметр со встроенным шунтом – один из тех, которые раньше использовались практически во всех “зарядниках” советского производства, да и много где еще.

Однако, первая же прогулка по электромагазинам и “развалам” принесла разочарование: оказывается, ничего, хотя бы отдаленно напоминающего искомый прибор, уже давным-давно в продаже нет… А так-так в то время автор еще не был знаком с бескрайними просторами китайских чудосайтов, то руки вновь потянулись к паяльнику, в результате чего и было разработано устройство, схема которого приведена на рис.1, а характеристики – в табл.1:

Для вывода результатов измерения в данном амперметре решено было использовать пару 7-сегментых LED- индикаторов. Такие индикаторы, несмотря на некоторую свою архаичность по сравнению с новомодными LCD-модулями типа 16хх, обладают также и рядом неоспоримых преимуществ: они гораздо надежнее и прочнее; не портятся и не мутнеют от контакта с нефтепродуктами (а замасленные руки в гараже – дело обычное, цифры на LED-индикаторах ярче и гораздо “читабельнее” – особенно издали; и к тому же, никакой холод в гараже светодиодам не страшен – в отличие от ЖК, который на морозе попросту “слепнет”.

Ну а последним доводом в пользу светодиодной матрицы – в контексте данной разработки – стал тот факт, что длинный 1602 просто-напросто не вписывался по размерам в штатное отверстие для амперметра (круглое и очень небольшое!) на корпусе ЗУ. Определившись с типом индикатора, встал другой вопрос – какой же микроконтроллер использовать в качестве основы для данного устройства. В том, что эту схему нужно строить именно на МК, сомнений никаких не возникало -делая амперметр на “КМОП-россыпи”, можно повредиться рассудком.

На первый взгляд, самым очевидным решением является “рабочая лошадка” ATtiny2313 – этот МК имеет достаточно развитую архитектуру, и вполне подходящее для подключения LED-матрицы количество линий ввода-вывода. Однако, здесь все оказалось не так уж и просто – ведь для измерения тока в состав МК обязательно должен входить аналогово-цифровой преобразователь, но инженеры фирмы Atmel почему-то не оснастили “2313-й” данной функцией… Другое дело семейство Меда: эти чипы обязательно имеют “на борту” модуль АЦП.

Читайте также:  Почему дергается машина если газ даешь

Но, с другой стороны, даже АТМедав – как самый простой представитель “старшего” семейства – обладает гораздо большей функциональностью, чем того требует построение простого амперметра. А это уже не самое лучшее решение с точки зрения классического подхода к проектированию!

Под “классическим подходом к проектированию” здесь подразумевается так называемый “принцип необходимого минимума” (горячим приверженцем которого, в пику новомодным “Ардуинам”, является и автор этих строк), согласно которому любую систему следует проектировать с использованием минимально возможного количества ресурсов; а окончательный результат должен содержать в себе как можно меньше незадействованных элементов.

Поэтому, в соответствии с этим принципом – простому прибору – простой микроконтроллер, и никак иначе! Правда, и не все простые МК подойдут для поставленной задачи. Взять, к примеру, ATtinyl3 – в нем есть АЦП, он прост и недорог; да вот только линий ввода- вывода – для подключения матрицы из двух “семисегментников” – у него явно маловато… Хотя, если немного пофантазировать, то такая проблема вполне разрешима – при помощи копеечного счетчика К176ИЕ4 и несложного алгоритма, этим счетчиком управляющего.

Вдобавок, у такого подхода есть даже положительные стороны – во-первых, отпадает необходимость “навешивать” на каждый сегмент индикатора по токоограничительному резистору (генераторы тока уже имеются в выходных каскадах счетчика); а во-вторых, в данной схеме можно использовать индикатор как с общим катодом, так и с общим анодом – для перехода на “общий анод” нужно изменить подключение транзисторов VT1 и VT2, выв. 6 DD2 подключить к линии +9В через резистор 1 кОм, а левый вывод R3 соединить с “землей”. Для того, чтобы управлять счетчиком при помощи МК, нужно задействовать всего две линии: одну – для сигнала счета (С), а другую – для сигнала сброса (R).

Причем, в ходе испытания устройства выяснилось, что КМОП-микросхема К176ИЕ4, будучи подключенной напрямую к линиям МК, вполне надежно работает с его ТТЛ- уровнями – без какого-либо дополнительного согласования. А еще две линии МК управляют ключами VT1-VT2, создавая динамическую индикацию. Фрагмент исходного кода, где реализована процедура управления счетчиком DD2, приведен в листинге: можно зажигать тот или иной разряд индикатора.

Кстати, благодаря счетчику К176ИЕ4, к любому МК можно подключить индикаторную матрицу 7×4, задействовав для этого только 6 линий ввода-вывода (две – для управления счетчиком, и еще четыре – для динамического переключения разрядов). А если в “напарники” к К176ИЕ4 добавить еще один счетчик – декадный К176ИЕ8 – чтобы использовать его для “сканирования” разрядов; то появится возможность подключить к МК индикаторную матрицу величиной до 10 знакомест, выделив для этого всего лишь 5 линий ввода-вывода (две – для управления К176ИЕ8; две – для К176ИЕ4; и еще одна – для гашения индикатора в момент счета К176ИЕ4)!

В подобном случае процедура написана на низкоуровневом языке AVR-Assembler; однако, она легко может быть переведена и на любой язык высокого уровня. В регистре Temp процедура получает число, которое необходимо отправить в счетчик К176ИЕ4 для отображения на индикаторе; линия 1 порта В микроконтроллера подключена ко входу сброса счетчика (R), а линия 2 – к его счетному входу (С).

Чтобы избежать мерцания чисел в момент переключения счетчика, перед вызовом данной процедуры необходимо погасить оба разряда, закрыв транзисторы VT1 и VT2 подачей лог.О на линии 0 и 4 порта В МК; ну а после того, как процедура отработает, уже алгоритм динамической индикации будет сводиться к управлению счетчиком К176ИЕ8, что во многом аналогично алгоритму передачи цифры в счетчик К176ИЕ4, приведенному в листинге выше.

К недостаткам же такого подключения индикаторной матрицы – помимо использования “лишней” микросхемы – можно отнести необходимость введения в схему дополнительного питания +9 В, т.к. попытки запитать КМОП-счетчики от +5 В, увы, не увенчались успехом… В качестве индикатора в данном устройстве применим практически любой сдвоенный “семисегментник” с общими катодами, предназначенный для работы в схемах с динамической индикацией. Допустимо использовать и четырехразрядную матрицу, задействовав у нее только два из четырех имеющихся разрядов.

В авторском варианте индикаторное “табло” и вовсе было собрано на отрезке макетной платы “решета”, из двух “древних” одноразрядных АЛС321… Правда, в процессе работы над схемой амперметра всплыла небольшая проблема – с подключением десятичной запятой: ведь она должна светиться в старшем разряде, и не гореть – в младшем. И если все делать “по уму”, то неплохо было бы выделить – для динамического управления этой самой запятой – еще одну ножку МК (т.к. в К176ИЕ4 никаких средств для управления запятыми не предусмотрено) – чтобы на нее “повесить” вывод индикатора, отвечающий за запятые.

Читайте также:  Расход масла снегоход ямаха викинг 540

Но, поскольку все линии ввода-вывода МК уже были заняты, то бороться с этой проблемой пришлось отнюдь не самым изящным способом: обе запятые решено было оставить постоянно зажженными, запитав соответствующий вывод индикаторной “матрицы” от линии +9В через токоограничительный резистор R3 (подбирая его сопротивление, можно выровнять яркость свечения запятой относительно остальных сегментов); а лишнюю запятую в младшем разряде (крайнюю правую) просто замазать каплей черной нитрокраски. С технической точки зрения такое решение сложно назвать идеальным; но в глаза “загримированная” подобным образом запятая совершенно никак не бросается…

В качестве датчика тока используются два параллельно соединенных резистора R1 и R2, мощностью по 5 Вт каждый. Вместо пары R1 и R2 вполне можно установить и один резистор сопротивлением 0,05 Ом – в таком случае его мощность должна быть не менее 7 Вт. Более того, в “прошивке” микроконтроллера предусмотрена возможность выбора сопротивления измерительного шунта – в данной схеме может быть применен как 0,05-омный, так и 0,1-омный датчик тока.

Для того, чтобы задать микроконтроллеру сопротивление шунта, использующегося в конкретном случае, необходимо записать определенное значение в ячейку памяти EEPROM, расположенную по адресу 0x00 – для сопротивления 0,1 Ом это может быть любое число меньше 128 (в таком случае МК, будет делить результат измерений на 2); а при использовании шунта сопротивлением 0,05 Ом в эту ячейку, соответственно, следует записать число больше 128.

И если планируется эксплуатировать устройство с приведенным на схеме 0,05-омным шунтом, то о записи указанной ячейки можно и вовсе не беспокоиться, т.к. у нового (или “стертого в ноль”) МК во всех ячейках памяти итак будет число 255 (OxFF). Питать прибор можно как от отдельного источника – напряжением не менее 12 В, так и от силового трансформатора самого зарядного устройства. Если питание будет производиться от трансформатора ЗУ, то желательно задействовать для этого отдельную обмотку, никак не связанную с зарядной цепью; однако, допускается питать амперметр и от одной из зарядных обмоток.

В этом случае напряжение питания нужно брать до выпрямительного моста “зарядника” (т.е., непосредственно с обмотки), а в разрыв обоих проводов питания амперметра включить по резистору 75 Ом/1 Вт. Резисторы необходимы для зашиты “отрицательных” диодов моста VD1-4 от прохождения через них части зарядного тока.

Дело в том, что если подключить прибор к зарядной обмотке, не установив этих резисторов то, учитывая общую “землю” у моста VD1-4 и диодного моста зарядного устройства, около половины зарядного тока аккумулятора будет возвращаться в обмотку не через мощные диоды выпрямителя ЗУ, а через “отрицательное” плечо моста VD1-4, вызывая сильный нагрев маломощных 1N4007.

Установка же этих резисторов ограничит ток питания прибора и оградит диодный мост VD1-4 от протекания зарядного тока, который теперь, практически полностью, будет течь по “правильной” цепи – через мощные диоды выпрямителя ЗУ.

Печатная плата для данного амперметра разрабатывалась под конкретные посадочные места в корпусе конкретного ЗУ; ее чертеж приведен на рис.2. Индикаторная матрица устанавливается отдельно – на небольшом платке (отрезке “макетки” 30×40), которая крепится к основной плате болтами М2,5 через дистанционные втулки, со стороны монтажа; и соединяется с ней 10-жильным шлейфом. Еще одной частью получившегося “бутерброда” является декоративная передняя панель из оргстекла, покрашенная с обратной стороны нитрокраской из баллончика (не закрашенным должен остаться только небольшой прямоугольник – “окошко” для индикатора).

Передняя панель также крепится к основной плате со стороны монтажа (болтами М3 с дистанционными втулками – ими же прибор крепится и к корпусу ЗУ). Печатные дорожки сильноточной цепи, идущие к резисторам R1 и R2, следует выполнить как можно более широкими, и припаять к ним выводы резисторов на всю длину, заодно усилив монтаж толстым слоем припоя. В качестве выводов для подключения прибора к ЗУ желательно использовать два болта М3, припаяв их головки к плате, и закрепив с другой стороны гайками.

При записи “прошивки” в МК его необходимо настроить для работы на частоте 1,2 МГц. от внутреннего тактового генератора. Для этого частоту тактирования следует выбрать равной 9,6 МГц, и включить внутренний делитель такта на 8. Для увеличения надежности работы также желательно активировать внутренний супервайзор питания (модуль BOD), настроив его на сброс МК при “просадке” питающего напряжения ниже 2.7 В. Все настройки производятся при помощи записи соответствующих значений в конфигурационные Fuse-ячейки: SUT1=1, SUT0=0, CKDIV8=0, BODLEVEL1 =0. BODLEVELO= 1. WDTON=1. Остальные “фъюзы” можно оставить по умолчанию.

Adblock
detector