Меню

Является подвижной частью двигателя или генератора электрического тока это

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Читайте также:  Как правильно разобрать аккумулятор от машины

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

ЧТО ТАКОЕ ГЕНЕРАТОР ПОСТОЯННОГО ТОКА

Генератор постоянного тока предназначен для преобразования кинетической энергии в электрическую. Используется в качестве источника электроэнергии в тепловозах, автомобилях, промышленных установках и т.д.

Представляет собой обратимую электрическую машину. В зависимости от схемы подключения может работать как генератор или как электродвигатель.

Принцип действия генератора постоянного тока основан на физическом явлении электромагнитной индукции. Заключается в том, что если проводник передвигается в магнитном поле, в нем возникает электрический ток. Такой ток называется индукционным.

Читайте также:  Чип тюнинг у сизенцева

Схематично это явление можно описать следующим образом. Если проводник, например, медную проволоку в виде рамки поместить между двумя полюсами подковообразного магнита, он будет находиться в постоянном магнитном поле.

Затем начнем вращать эту рамку. В процессе вращения она будет пересекать магнитный поток. Вследствие этого, внутри проволоки индуцируется электродвижущая сила э.д.с.

Если концы этой рамки соединить, то под воздействием э.д.с., потечет индукционный ток. Если включить в эту цепь амперметр, он покажет наличие в ней тока. Это и есть самый простой макет генератора.

Для того, чтобы подключить рамку к электрической цепи, ее крепят к полукольцам. Две щетки контактируют с вращающимися полукольцами поочередно, и через них индукционный ток поступает далее в электрическую цепь. Полукольца устанавливают на оси, вокруг которой вращается рамка. Это упрощенная схема коллектора.

Когда рамка переходит через горизонтальное положение (нейтраль), щетки одновременно переключаются с одного полукольца на второе. В этот момент стороны рамки магнитных силовых линий не пересекают. В таком положении э.д.с. и, соответственно, ток равны 0. Благодаря этому переключение щеток не сопровождается искрением.

На величину электродвижущей силы влияют следующие факторы:

  • длина проволоки;
  • величина индукции магнитного поля;
  • частота вращения.

Величина э.д.с. (Е) меняется по синусоидальной траектории, с пиками при прохождении рамкой вертикальных положений. В эти моменты она перпендикулярно пересекает максимум силовых линий. Нулевые значения отмечаются при прохождении нейтрали. После ее пересечения э.д.с. меняет свое направление.

В свою очередь, коллектор, чередуя каждые пол оборота полукольца на щетках, выпрямляет переменную э.д.с. На выходе получается пульсирующий, в виде выпрямленной синусоиды, постоянный ток.

КАК НА ВЫХОДЕ ПОЛУЧАЕТСЯ ПОСТОЯННЫЙ ТОК

Для того, чтобы можно было пользоваться генератором, как источником энергии, ток нужно сгладить. Если увеличить количество рамок до двух и расположить их перпендикулярно друг другу. Тогда пиковые значения Е и, соответственно, тока будут возникать уже каждые четверть оборота.

Если их соединить последовательно, индуцируемый ток будет суммироваться. А его выходная характеристика будет иметь вид двух, смещенных между собой на четверть периода выпрямленных синусоид. Пульсация значительно уменьшится.

Если количество последовательных рамок еще увеличивать, тогда значение тока будет все больше приближаться к идеальной прямой. Кроме того, величина электродвижущей силы напрямую зависит от длины проводника. Поэтому количество рамок делают большим, а их совокупность и составляет обмотку вращающейся части генератора — якоря.

Для последовательного соединения витков обмотки, конец предыдущего нужно соединить с началом следующего. Делают это на полукольцах или, как их называют, пластинах. Их количество будет равняться количеству витков.

Другим фактором, влияющим на величину Е, является сила магнитного поля. Индукция магнитного потока обычного магнита слишком маленькая, а потери в среде между двумя полюсами наоборот очень большие.

Читайте также:  Мвд ремонт служебного автомобиля

Для решения первой проблемы вместо постоянного магнита используют гораздо более сильный электромагнит. Для решения второй проблемы сердечник якоря выполняют из стали. Также уменьшают до самого минимума зазор между якорем генератора и полюсами электромагнита.

Ток, протекающий в якоре, образуют своего рода электромагнит, и создает свое магнитное поле. Это явление называется реакция якоря. В нем также возникает реактивная э.д.с. Вместе они искажают магнитное поле. Чтобы это скомпенсировать, устанавливаются добавочные полюса. Они включаются в цепь якоря и полностью перекрывают это негативное воздействие.

По источнику тока возбуждения генераторы бывают:

  • с независимым возбуждением;
  • с самовозбуждением.

Необходимый для работы генератора магнитный поток создается благодаря току, проходящему через обмотки главных полюсов. Этот ток называется током возбуждения. При независимом возбуждении обмотка питается от аккумулятора или другого источника питания. При самовозбуждении питается током якоря.

Благодаря тому, что сердечники полюсов обладают остаточным магнетизмом, они создают небольшой магнитный поток. Если якорь начинает вращаться, этого потока достаточно для появления в витках якоря небольшого индукционного тока.

Этот ток, попадая в обмотку возбуждения полюсов, усиливает рабочий магнитный поток. Это приводит к увеличению тока в якоре и происходит цепная реакция. Таким образом, генератор быстро выходит на расчетную мощность.

По схеме подключения обмотки якоря к обмотке возбуждения генераторы с самовозбуждением делятся на три типа:

  • с параллельным возбуждением;
  • с последовательным возбуждением;
  • со смешанным возбуждением.

Схема возбуждения влияет на характеристики генератора и особенности его применения. Основным его параметром является внешняя характеристика, выражающая зависимость напряжения на выходе от тока нагрузки при заданной частоте вращения и параметрах возбуждения. Также к основным характеристикам относится мощность и КПД, который достигает 90-95%.

УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор состоит из двух частей:

  • подвижная вращающаяся часть якорь;
  • неподвижная – статор.

Статор состоит из станины, магнитных полюсов, подшипникового щита с подшипниками. Станина — это несущая часть генератора, на которой размещены все его части. Внутри установлены полюсы с сердечниками и обмотками возбуждения. Изготавливается из ферромагнитных материалов.

Ротор или якорь состоит из сердечника, вала, коллектора и вентилятора. В качестве опоры для якоря используются подшипники, установленные на боковых подшипниковых щитах статора.

Преимущества и область применения.

Генераторы постоянного тока обладают следующими достоинствами:

  • простота конструкции, компактность;
  • надежность;
  • экономичность;
  • обратимость, то есть возможность использования в качестве электродвигателя;
  • практически линейная внешняя характеристика.

Недостатки:

  • высокая стоимость;
  • ограниченный срок службы щеточно-коллекторного узла.

Используются в различных отраслях производства, в строительстве, в промышленных установках, сварочном оборудовании, в машиностроении, на предприятиях металлургической промышленности, в автомобильном, железнодорожном, воздушном и морском, транспорте.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.