Меню

Устройство датчика оборотов двигателя

Что такое датчик оборотов мотора?

При возникновении определенных проблем с силовым агрегатом автомобилисты нередко задаются вопросов, а если ли в нем механизм, который бы помог определить обороты. Ну а поскольку именно первое подозрение при неисправностях падает именно на обороты мотора, то и интересует их именно датчик оборотов двигателя. Но бывает и так, что неисправности с мотором могут быть вызваны совершенно иными причинами. Поэтому уместно для начала определиться СС источником неисправности и только после этого выполнять проверку измерителей. Но в любом случае, если необходимо обнаружить нужный датчик, понадобится хоть немного информации о его месторасположении, особенностях, да и в целом об основных понятиях.

Что такое датчик оборотов и зачем он нужен?

Датчик оборотов предусмотрен в устройстве мотора для выполнения функции синхронизирования системы зажигания и впрыска топлива. Нередко этот измеритель еще называют измерителем частоты вращения. Датчик оборотов передает нужную информацию в электрический блок, а также данные о том, какие вращения поддерживает коленчатый вал в конкретный момент. Данный измеритель считается важнейшим механизмом автомобиля, поскольку именно от него зависит взаимодействие большинства систем. Он помогает обеспечить корректное функционирование всего транспортного средства. Особые сигналы обрабатываются ЭБУ и посылаются в измеритель для того, чтобы выяснить несколько важных моментов. Это количество впрыскиваемого топлива в данный момент, сам момент впрыска и время для активации клапана адсорбера, а также момент зажигания и угол поворота распределительного вала. Ну и понятное дело, для определения неисправности и проверки прибора, его для начала необходимо найти в автомобиле.

Где располагается датчик частоты вращения?

Индукционный измеритель или датчик оборотов в основном располагается над маркерным диском транспортного средства. В свою очередь этот элемент может находится либо на маховике, либо на коленвале внутри блока цилиндров, либо спереди моторного отсека на коленвале. Очень часто небольшая кривизна зубцов маховика или наличие маленького скола могут привести к нарушениям в работе системы зажигания. Тогда силовой агрегат не сможет работать на повышенных частотах вращения и будет происходить хаотичное искрообразование. Кроме того, на некоторых автомобилях этот датчик может быть заменен датчиком Холла. Это устройство способно передавать в главный блок управления сигнал о фазах механизма газораспределения, а также обороты мотора. Если это так, то прибор будет расположен у распределительного вала. Если измеритель частоты вращения выйдет из строя, автомобилист не сможет завести свое транспортное средство. И если после доскональной проверки систем зажигания и топлива существенных отклонений не будет выявлено, нужно обязательно проверить работоспособность самого датчика оборотов. Если же возникает так называемое плавающее вращение двигателя, то понадобится проверить сразу все варианты проблем. Ну а для своевременного обнаружения неполадок желательно повести диагностику автомобиля.

Что можно сделать при выходе из строя датчика оборотов, подробнее будет рассказано в этом видео:

Датчик оборотов двигателя отдельно стоящий

Датчик оборотов двигателя предоставляет в систему управления зажиганием или ЭБУ двигателем информацию об оборотах коленчатого вала (датчик синхронизации).

Принцип работы

Рассмотрим часто встречающиеся виды датчиков оборотов, которые расположены вне распределителя зажигания.

Индукционные датчики или датчики генераторного типа более распространены и имеют несколько типов конструктивного исполнения. На рисунке изображён в разрезе такой датчик.

Рис. Датчик оборотов и маркерный диск: 1 — постоянный магнит, 2 — корпус, 3 — место крепления, 4 — сердечник, 5 — обмотка, 6 — маркерный диск.

На рисунке ниже показана осциллограмма датчика оборотов. Маркерный диск имеет строго определённое количество зубьев.

Рис. Осциллограмма датчика оборотов.

При прохождении зуба маркерного диска вблизи сердечника датчика, изменяется величина магнитного потока. Для синхронизации, т.е. точного определения верхней мёртвой точки и вычисления величины опережения зажигания, на диске отсутствует один зуб. На осциллограмме этот момент определяется отсутствием сигнала. Для ЭБУ двигателем это информация, что ВМТ через такой-то угол поворота коленвала (для ВАЗ — 19 зубьев), т.е. сели пропуск зуба поместить под датчиком оборотов, то сосчитав 19 зубьев в сторону вращения двигателя, мы должны оказаться под меткой ВМТ на блоке.

Магнитоэлектрический датчик Холла используют для получения импульсов напряжения при прохождении сильногоцилиндрического экрана между постоянным магнитом с одной стороны и полупроводником, по которому протекает ток — с другой.

В некоторых конструкциях крыльчатка-экран не используется, а магнит крепится на подвижном элементе и при прохождении магнита вблизи чувствительного элемента датчика Холла, на его выходе появляется импульс напряжения.

Примером может служить MRE/Hall датчик коленвала, осциллограмма которого приведена на рисунке ниже. Напряжение питания 5 В.

Расположение

Индукционные датчики располагаются над маркерным диском. Сам маркерный диск может располагаться в передней части двигателя на коленчатом валу совместно со шкивом привода вспомогательных агрегатов (ВАЗ, ГАЗ, БМВ, ЯГУАР); на коленвалу внутри блока цилиндров (ОПЕЛЬ, ФОРД); на маховике.

Правильно, если маркерные зубья на маховике предназначены для использования только для датчика оборотов и плохо, сели в качестве маркерных зубьев используются стартерпые зубья (АУДИ, ВОЛЬВО). Скол или искривление зуба маховика приводит к сбоям в системе зажигания и, обычно, на повышенных оборотах двигатель отказывается работать, наблюдается хаотическое искрообразование, т.к. ЭБУ двигателем ошибается в подсчёте количества зубьев и сдвигается момент искрообразования. Очень внимательно надо относиться при замене деталей двигателя, относящихся к системе искрообразования.

Маркерный диск и система управления двигателем — единое целое.

Датчики Холла редко используются в качестве датчиков оборотов — обычно это датчики фазы и расположены в непосредственной близости к распределительному валу.

Неисправности датчика оборотов двигателя

Первым признаком неисправности датчика оборотов или его цепей является отсутствие искры, отсутствие впрыска форсунками, не происходит включение бензонасоса при проворачивании двигателя стартером (нет управляющих сигналов и коммутации системных реле). Встречаются и исключения. При неисправности в цепях датчика оборотов ЭБУ двигателем переходит в аварийный режим работы и ориентируется по датчику распредвала (ОПЕЛЬ). Бывают случаи, когда при установке на автомобиль заведомо исправного двигателя, вместо неисправного, не даёт результат. Двигатель не запускается, т.к. система управления осталась от предыдущего двигателя, в котором зубчатый диск имеет другое количество зубьев (Пример установки мотора: Opel C20NE вместо механически аналогичного-20SE).

В индукционных датчиках случаются обрывы обмотки. Проверяются обычно на наличие сопротивления. При сбоях в системе искрообразования необходимо проверить количество и качество маркерных зубьев и сравнить со справочными данными, т.к. иногда без мысли меняются маховики, коленвалы и т.п., не обращая внимания на то, что на них присутствуют маркерные части.

Датчики Холла выходят из строя из-за неисправности электрической части.

Методика проверки

Индукционные датчики имеют сопротивление от 200 до 2000 Ом.

Датчики на эффекте Холла можно проверять в отсоединённом и в присоединённом к общей схеме состоянии. На сигнальном выводе при вращении должно появляться и исчезать управляющее напряжение.

Датчики частоты вращения двигателя

Датчики частоты вращения двигателя используются в системах управления двигателем для:

  • измерения числа оборотов двигателя
  • определения положения коленчатого вала (положение поршня двигателя)

Число оборотов рассчитывается по интервалу между сигналами датчика скорости вращения.

Индуктивные датчики скорости вращения

Рис. Индуктивный датчик скорости вращения (конструкция):

  1. Постоянный магнит
  2. Корпус датчика
  3. Корпус двигателя
  4. Полюсный контактный штифт
  5. Обмотка
  6. Воздушный зазор
  7. Зубчатое колесо с точкой отсчета

Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.

Читайте также:  Део нексия расход масла

Рис. Сигнал индуктивного датчика скорости вращения двигателя:

Активные датчики скорости вращения

Активные датчики скорости вращения работают по магнитостатическому принципу. Амплитуда выходного сигнала не зависит от числа оборотов. Благодаря этому можно измерять скорость вращения и при очень низком числе оборотов (квазистатическое определение числа оборотов).

Дифференциальный датчик Холла

На проводящей ток пластинке, по которой вертикально проходит магнитная индукция В, поперечно к направлению тока можно снимать напряжение UH (напряжение Холла), пропорциональное направлению тока.

Рис. Принцип работы дифференциального датчика Холла:

  • а Расположение датчика
  • b Сигнал датчика Холла
  • большая амплитуда при маленьком воздушном зазоре
  • маленькая амплитуда при большом воздушном зазоре
  • с Выходной сигнал
  1. Магнит
  2. Датчик Холла 1
  3. Датчик Холла 2
  4. Зубчатое колесо

В дифференциальном датчике Холла магнитное поле вырабатывается постоянным магнитом (поз. 1). Между магнитом и импульсным кольцом (4) находятся два сенсорных элемента Холла (2 и 3). Магнитный поток, который проходит сквозь них, зависит от того, находится ли датчик скорости вращения напротив зубца или паза. Благодаря созданию разности сигналов от обоих датчиков достигается снижение магнитных сигналов возмущения и улучшенное соотношение сигнала/ шума. Боковые поверхности сигнала датчика могут обрабатываться без оцифровывания непосредственно в блоке управления.

Вместо ферромагнитного зубчатого колеса используются также многополюсные колеса. Здесь на немагнитном металлическом носителе установлен намагничивающийся пластик, который попеременно намагничивается. Эти северные и южные полюсы принимают на себя функцию зубцов колеса.

AMR-датчики

Рис. Принцип определения числа оборотов с помощью датчика AMP:

  • а Размещение
  • в различные моменты времени
  • b Сигнал датчика AMP
  • с Выходной сигнал
  1. Импульсное (активное) колесо
  2. Сенсорный элемент
  3. Магнит

Электрическое сопротивление магнито-резистивного материала (AMP, анизотропный магниторезистивный) является анизотропным. Это означает, что оно зависит от направления магнитного поля, которое на него воздействует. Это свойство используется в AMP-датчике. Датчик находится между магнитом и импульсным кольцом. Линии поля изменяют свое направление, когда вращается импульсное (активное) колесо. В результате формируется синусоидальное напряжение, которое усиливается в схеме обработки данных и преобразуется в сигнал прямоугольной формы.

GMR-датчики

Усовершенствование активных датчиков скорости вращения отражено в использовании технологии GMR (ГМР) (Giant Magneto-Resistance). По причине высокой чувствительности по сравнению с датчиками AMP здесь возможны большие воздушные зазоры, за счет чего предполагаются использования в трудных сферах применения. Более высокая чувствительность производит меньше шумов фронта сигнала.

В ГМР-датчиках возможны также все двухпроводные порты, используемые ранее в датчиках скорости вращения Холла.

Датчик оборотов автомобильного двигателя

Неполадки датчика оборотов двигателя в автомобиле приводят к некорректности таковых, к нарушению работы системы впрыска топлива, зажигания, падению мощности. А также это единственный сенсор, при поломке которого машина может заглохнуть, не завестись. Другое название устройства — датчик вращений и/или положения коленвала. Рассмотрим место ДПКВ среди иных подобных устройств автомобиля, его функции, конструкции, виды, диагностику и замену.

Назначение датчика оборотов двигателя

К рассматриваемому прибору применяются такие названия, это датчик:

  • числа (количества) оборотов двигателя;
  • частоты вращений (поворотов) коленвала;
  • ДЧВ;
  • индуктивный;
  • синхронизации;
  • ВМТ или верхней мертвой точки поршня цилиндра — система определяет этот параметр через данный датчик, который в свою очередь отслеживает его через реперное колесо КВ (на нем есть метка, пробел зубьев). То есть определенное положение этого диска отвечает позиции поршня;
  • ДПКВ — положения (оборотов) коленвала;
  • контрольной метки;
  • фаз.

Датчик оборотов двигателя не надо путать с сенсором положения распредвала (ДПРВ). А также на авто с электронным блоком управления (ЭБУ, ЭСУД) разные наименования для детектора количества оборотов и термин «датчик положения коленвала» (КВ) применяются для одного и того же устройства. Но есть автомобили (такие модели встречаются реже) и с отдельным последним (два таких изделия часто обозначают как G28 и G4), что надо помнить. В этой статье эти названия, если нет уточнения, применяются к одному и тому же устройству, чаще всего обозначаемому аббревиатурой ДПКВ, реже ДЧВ.

На схемах силовых блоков иномарок часто детектор синхронизации обозначен как G28.

ДЧВ относится к оснащению контроля и управления двигателем, к системе подачи сигналов о его состоянии на ЭБУ.

  • синхронизация системы зажигания, впрыска горючего;
  • передача данных о поддерживаемых коленчатым валом (КВ) вращениях, о его угле поворота в конкретный момент;
  • корректное взаимодействие всех систем, функционирование всего транспортного средства.

Что отслеживает датчик вращений и положения коленвала

Детектор оборотов двигателя передает на ЭБУ следующее:

  • объем впрыскиваемого топлива в конкретный момент;
  • кода появляется сам момент впрыска;
  • оптимальное время для активации клапана адсорбера, длительность его работы;
  • момент и угол опережения зажигания, угол поворота КВ.

ДПКВ — это единственный датчик, выход из строя которого, среди прочих схожих для неполадок сенсоров последствий, приведет к полной остановки двигателя. Именно он позволяет системе определить, когда на свечах зажигания создавать искровой заряд.

Где находится датчик оборотов

Детектор оборотов, он же индукционный измеритель расположен, как правило, над маркерным (реперным) колесом, зубчики которого выполняют для него роль сигнализатора. Установлен в таких местах:

  • маховик;
  • коленвал, внутри сегмента цилиндров (часто так у Ford, Opel);
  • с фронта моторной части на КВ, со шкивом привода дополнительных узлов (Jaguar, BMW, ВАЗ и так далее).

Маркерные выступы реперного колеса могут предназначаться только для измерения оборотов ДВС (лучший вариант), а также их роль могут выполнять выступы на стартерном узле (Audi, Volvo). У некоторых моделей измеритель оборотов заменяет сенсор Холла, тогда обычно устройство находится вблизи распредвала.

Место сенсора синхронизации неудобное, поэтому он имеет длинный (до 70 см) кабель с разъемом, само устройство крепится на кронштейне. Стандартное его место — около шкива привода генератора.

Сложности с идентификацией

Приведем пример, как владельцем Audi 100 2.6 описана вариация разных сенсоров. Измеритель оборотов тут обозначен как G28, но также есть отдельный детектор для КВ (G4):

Ниже на рисунке упоминаемый отдельный датчик G4, а соотношение по месту его расположения к G28 показано на фото выше:

Учитывая сказанное, для начала желательно ознакомиться со схемой силовой системы по спецификации конкретной модели машины.

Конструкция и общий принцип работы автомобильного сенсора оборотов

При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.

Читайте также:  Каковы размеры границ опасных зон вблизи движущихся частей машин

Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).

Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:

  1. Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
  2. Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
  3. Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
  4. При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
  5. Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.

Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.

Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.

Ниже рассмотрим виды ДПКВ и их нюансы.

Разновидности автомобильных датчиков оборотов двигателя

Есть несколько типов автомобильных измерителей вращений двигателя по принципу создания и регистрации изменений в чувствительной среде.

Индукционные (индуктивные)

Индуктивные датчики синхронизации оборотов двигателя самые простые, распространенные, дешевые, но это не уменьшает их эффективность.

Основной элемент индукционных детекторов числа вращений ДВС — катушка, намагничивающая сердечник и создающая магнитные потоки.

В следующем объяснении цифровые ссылки на рисунок ниже. Индуктивный датчик синхронизации устанавливается сразу напротив зубчатой ферромагнитной части КВ (7). На ней также есть небольшой воздушный зазор (место, где отсутствуют выступы). Датчик внутри состоит из стального намагниченного сердечника (полюсный контактный стержень, 4), с обмоткой тонкой медной, изолированной эмалью, проволокой (5), наподобие как у трансформаторов. Данный элемент связан с постоянным магнитом (1).

  1. Полюсный контактный штырь распространяет магнитополе, которое проходит на зубчатый вал.
  2. Зубцы задевают магнитопоток, идущий через катушку, его свойства на выступах и впадинах меняются. На первых этот рассеиваемый поток становится более концентрируемым (пучок). На вторых, наоборот, осуществляется ослабление указанного явления.
  3. Вышеуказанные трансформации индуцируют на витках обмотки выходное переменное напряжение с определенной синусоидой. Величина пропорциональная скорости и количеству оборотов (рис. 2). Амплитуда быстро растет с их повышением (от нескольких мВ до 100 В и больше). Достаточное значение образовывается, начиная с минимального числа вращений от 30/мин.

Оптические

Конструкция состоит из ИК-светодиода с установленным напротив него приемником. Между элементами — зубцы коленвала. Линия излучения пересекается этими выступами, что фиксирует приемник и отправляет соответствующий импульс на ЭБУ. Применяются реже.

Активные

Далее рассмотрим так называемые «активные» датчики вращений мотора, работающие по магнитостатическому методу. При них на амплитуду выходного импульса не влияет число оборотов, поэтому становятся доступными измерения интенсивности поворотов КВ при чрезвычайно низком количестве таковых (квазистатический мониторинг). Такие изделия намного более продвинутые, с расширенными возможностями.

Датчики числа вращений двигателей с дифференциальными детекторами Холла

На токопроводящей пластине, пропускающей в вертикальном направлении магнитную индукцию, поперечно к течению тока можно фиксировать пропорциональное его направлению, так называемое напряжение Холла.

Рисунок со схемой данного варианта выше. В таком дифдатчике ДПКВ поле создается постоянным магнитом (1). Два сенсора Холла (2 и 3) размещены между магнитом и кольцом, продуцирующим импульсы (4). В магнитопотоке происходят изменения в зависимости от того, что оказывается на нем — впадина или зубец. Разностью сигналов двух сенсоров снижается возмущение, уровень отклонений, улучшается соотношение сигнала и шума. Боковые участки сигнала могут анализироваться без оцифровки прямо на блоке управления.

Зубчатые колеса синхронизации могут быть не только ферромагнитными, но и многополюсными, где немагнитный носитель из металла снабжен кусочком специального пластика, который попеременно намагничивается. Северные и южные полюсы такого элемента выполняют роль делений.

Чувствительная часть AMR сенсоров синхронизации оборотов автомобиля сделана из магниторезистивного состава.

АМР — анизотропный магниторезистивный. Первый термин означает, что электросопротивление этого материала зависит от направленности воздействующего магнитополя. Такой сенсор установлен между магнитом и импульсным диском (аналог зубчатого, как при индуктивных сенсорах).

При вращении импульсного активного диска линии поля изменяют свои параметры, что формирует синусоидальное напряжение, усиливаемое схемой обработки данных, преобразовываемое ею в импульс прямоугольной геометрии.

В данном случае применяется инновационная технология Giant Magneto-Resistance. Такой сенсор намного чувствительнее, чем AMR — тут возможны значительные воздушные промежутки.

GMR-датчики оборотов двигателя применяются для сложных условий, высокая сенситивность создает меньше шумов, погрешностей сигнала.

Продвинутые ГМР детекторы оснащают двухпроводными портами, они же иногда встречаются в сенсорах вращения Холла.

Признаки неисправности датчика синхронизации

При поломках иных датчиков, например, холостого хода, машина может более или менее функционировать, иногда почти нормально. Это же характерно при неисправности ДПКВ, но тут также добавляется последствие в виде невозможности запустить мотор, и такой риск значительный.

Деталь обычно не ремонтируют: это либо невозможно сделать, либо усилия будут стоить дороже, чем новое изделие. Поломка устройства сразу же подразумевает покупку нового такого сенсора синхронизации. Исключения составляют случаи, когда ДЧВ неправильно работает из-за отошедших контактов, загрязнения — эти неполадки можно легко устранить.

Симптомы неполадки детектора оборотов коленвала:

  • заметное даже без приборов уменьшение тяговых способностей. Данный симптом сигнализирует о потребности ТО, но не всегда он характерный для поломок ДЧВ;
  • самопроизвольное повышение/понижение оборотов (в том числе и остановки двигателя после них), «плавание» на холостом режиме;
  • детонация при повышенных (динамических) нагрузках;
  • не запуск ДВС.

Симптоматика поломки не зависит от типа детектора положения коленвала. О сломанном ДПКВ также свидетельствует отсутствие искрообразования и горящий значок «Check Engine» на приборной панели.

Если после проверки системы зажигания и топлива не обнаружено в ней никаких поломок или нет сомнений в ее работоспособности, но автомобиль не заводится, то, скорее всего, сломан измеритель оборотов коленвала.

Диагностика

Признаки поломки датчика числа оборотов свойственные и неполадкам многих других узлов, что обуславливает необходимость комплексной диагностики ДВС.

Самый простой способ, показывающий результат со стопроцентной точностью, — использовать диагностический сканер, подключаемый к разъему ODBII который есть в каждом современном автомобиле с ЭБУ. Прибор считает ошибки, покажет код поломки, который расшифровывается в спецификации конкретной марки.

Первым делом осматривают сам датчик количества оборотов ДВС автомобиля. Если замечены следы грязи, стружки на торце, отошедшие контакты и крепление, производят чистку, устанавливают прибор должным образом. Затем — подключить сканер, считать им коды. Цифровая комбинация неисправности именно ДПКВ часто PO335 или 0336 в зависимости от наличия сигнала от узла. Могут быть иные варианты для конкретной модели авто, например, в буфере ошибок может отобразиться код 35 или 19.

Читайте также:  Объем двигателя газ 3110 406 двигатель

При обнаружении ошибок их удаляют из памяти ЭБУ и проводят тест-драйв — так проверят, появятся ли они снова. Если есть повторное выявление сбоев, приступают к анализу непосредственного самого детектора синхронизации оборотов иными способами.

Причины поломок

Наиболее частые причины неполадок индукционных ДПКВ — механические повреждения или межвитковое замыкание проводки (при этом часто наблюдается ограничение оборотов на 3–4 тыс.).

Недостатки реперного диска

Даже микроскол, маленькая кривизна зубца маховика могут быть причинами некорректной работы зажигания, из-за чего транспортное средство не работает на высокой интенсивности оборотов.

При этом часто появляется хаотичное искрообразование, поскольку на блок контроля от вполне исправного датчика оборотов идут данные с погрешностями, спровоцированными указанными недостатками диска. ЭБУ при этом неправильно определяет количество выступов. Такое же характерно, когда рассматриваемый детектор установлен с ошибками, неоткалиброванный, загрязненный или есть какой-либо посторонний предмет между ним и колесом.

Методы проверки ДПКВ

Перед тем как мы перейдем к описанию способов анализа, порекомендуем очень простой выход из ситуации. Варианты проверки датчика оборотов не всегда покажут стопроцентный результат, отображая лишь некоторые свойства изделия. Самым практичным решением будет, если пользователь одолжит аналогичный сенсор синхронизации у знакомых, поставит его и если автомобиль будет работать без проблем, то логично — поломка именно в нем.

Рассмотрим способы анализа датчика положения коленвала от простого к сложному. Осмотр и применение сканера ODBII мы описали выше. Надо сказать, что сенсоры оборотов моторов сами по себе ломаются чрезвычайно редко из-за простоты конструкции. Чаще причины поломки для ДПКВ это механические повреждения, например, когда изделие задето инструментами при ремонте автомобиля, а также попадание сторонних предметов между реперным диском и сенсором.

При проверке мультиметром сопротивления можно не снимать ДПКВ. Но удобнее будет его демонтировать. Перед снятием отмечают и запоминают исходное положение изделия. Чтобы избежать раскалибровки, важно маркером отметить позицию, сделать фото смартфоном. Далее, снимают клемму с аккумулятора автомобиля и вынимают детектор — отстегивают кабель контроллера/питания, болтики крепления откручивают.

Анализ датчика коленвала омметром

Данный способ проверки применяется для индуктивных сенсоров синхронизации и положения коленвала, то есть для тех, которые имеют катушку, индуцирующую магнитную среду. Замеряется её сопротивление. Надо перевести мультиметр в режим замера указанной величины на отметку 200 кОм, можно аналогично воспользоваться омметром. К контактам катушки (к клеммам датчика на его пластиковой фишке, туда же подсоединяется кабель контроллера/питания) прикасаются щупами, полярность не имеет значения.

Значение сопротивления прописывается в спецификации сенсора (вся информация есть не только в бумажной инструкции, но и в интернете), обычно оно в пределах 500–700 или 800–900 Ом.

Минус данного метода в том, что сломанными могут быть и иные части детектора коленвала, проверку которых он не охватывает.

Комплексная проверка с анализом индуктивности

Комплексный метод, о котором пойдет речь, также применяется к ДПКВ, работающим на основе принципа индуктивности.

Процедура включает вышеописанный способ и ряд других действий, главные из которых — анализ индуктивности.

  1. Мультиметром замеряют сопротивление, как описано выше.
  2. Для замеров индуктивности витков потребуется спецприбор «измеритель индуктивности», Нормальное значение — 200–400 мГц. Анализ можно провести и мультиметром, но к нему придется купить или изготовить (в сети есть множество описаний) специальную приставку.
  3. Мегаомметром измеряют сопротивление изоляционной обмотки между концами детектора. При напряжении 500 В не должно быть выше 20 мОм.
  4. Размагнитить сетевым трансформатором или иным способом катушку, реперный диск. Если же и после этого будет наблюдаться поломка, то потребуется замена ДПКВ.

Замена, установка

При монтаже ДПКВ надо правильно выставить зазор между ним и зубчатой частью шкива. Стандартное правильное значение зазора между сердечником прибора и колесом синхронизации — 0.5–1.5 мм. Этот промежуток регулируется шайбами (прокладками) между посадочным местом сенсора и его корпусом.

Размещение датчика синхронизации оборотов с пояснениями:

Надо следить, чтобы сенсор располагался напротив отметки на колесе синхронизации с определенным углом и зазором — это самые ключевые моменты:

При снятии сенсора надо обратить внимание на правильность его расположения — возможно оно было нарушено, что стало причиной некорректности значений при рабочем изделии.

Итак, акцентируем еще раз: самым важным при установке является расположение сенсора по метке с соблюдением прописанного в спецификации зазора к зубчикам реперного колеса КВ.

Калибровка

Датчик может быть исправным, но отображать скорость движения КВ, число оборотов, иные данные с погрешностями, тогда потребуется его калибровка. Процесс при индуктивных типах ДПКВ простой — зазор выставляется шайбами со значением, прописанным в инструкции. Но в некоторых автомобилях он достаточно сложный. Опишем такой пример.

ДЧВ в данном случае стоит на стыке КПП, считывает зубцы с венчика маховика. Посадочный кронштейн снабжен пазами для регулировки, позволяющие делать смещение на 7–8 мм. На последующих в примере схемах измеритель числа вращений двигателя обозначен G28.

Калибровка крайне желательная в таких ситуациях:

  • снимали коленвал;
  • монтировали неродной, другой маховик;
  • после замены блока.

При откручивании маховика от КВ калибровка неизбежная, даже несмотря на то, что кронштейн сенсора не откручивали, не говоря уже когда он снимался.

У некоторых автомобилей процесс калибровки может быть сложным со специнструментами, например, как на изображениях:

Опишем один из вариантов калибровки.

Совмещение отметок на шкиве:

Стопор (фиксатор) помещают в КВ, на место датчика G4 (тут модель с отдельными сенсорами оборотов и КВ), производится фиксация узла. При этом критически важно не подвинуть вал:

Вводят специнструмент VAG3308 в кронштейн ДПКВ и смотрят, располагается ли его торец между выступами маховика:

В нашем примере было обнаружено смещение кронштейна на около 3 мм, из-за этого промах был на пол-зуба. Для калибровки ослабили 2 болта кронштейна ДПКВ, сместили его, чтобы его торец попал между выступами.

Для калибровки необходимо ослабить два болта кронштейна датчика G28, сместить его так, чтобы «клык» попал между делениями маховика и снова завинтить крепление:

Как видим, в описанной ситуации потребуется специнструмент VAG3308 и стопор коленвала VAG3242, без них «на глаз» выставить кронштейн датчика невозможно. Но такая ситуация может быть не у всех моделей автомобилей, информацию о нюансах процедуры не составит труда найти в сети, на спецфорумах. Мы же рассмотрели процедуру для Audi 100 2.6 c датчиком оборотов ДВС G28 (v2.6/2.8).

Надо помнить то, что в паре с ДЧВ двигателя может функционировать отдельный сенсор коленвала G4 как в описанном случае (выше в 4 разделе статьи мы уже писали об этом). Не всегда он есть, но тут он отдельный, сразу за кондиционерным компрессором, то есть важно не перепутать эти приборы.

Специфика датчиков оборотов для электродвигателей

Сенсор оборотов электродвигателя намного сложнее в своих разновидностях, по спецификации и обслуживанию, хотя в основе принцип тот же — фиксация изменения генерируемого чувствительной среды, генерируемого напряжения, электросигнала, тока, и в том числе того же магнитного поля.

Принципы установки также подобные — приборы размещаются близко к реперному колесу, валу.

Измерители вращений для электроавтомобилей напоминают такие же устройства, как и для различных электроустановок, например, промышленных станков (токарных и прочих), верстаков, и даже бытовых приборов (стиральных машин, дрелей).

Функции датчиков оборотов электромоторов также выполняют тахогенераторы:

Схема работы тахометрических генераторов:

Видео по теме

Adblock
detector