Диагностирование автомобиля: задачи, виды, методы
Процесс определения технического состояния объекта с определенной точностью (объекты диагностирования — машина или ее составная часть), т.е. процесс, включающий измерения, анализ результатов измерений, постановку диагноза и принятие решения — диагностирование.
Основная задача диагностирования в процессе технического обслуживания — определение технического состояния объекта и прогнозирование его дальнейших изменений. Это позволяет управлять техническим состоянием машин.
Техническое состояние машин изменяется случайно и зависит от различных эксплуатационных факторов (почвенно-климатических условий, видов выполняемой работы, интенсивности нагрузки, квалификации механизаторов, качества обслуживания и др.).
Они по-разному влияют на интенсивность изнашивания деталей машин, в связи с чем для каждой конкретной машины требуются ремонтно-обслуживающие воздействия разных объемов.
Предварительное диагностирование машины и ее составных частей позволяет определить фактический объем работ по обслуживанию или ремонту. При этом решаются следующие задачи:
- проверка исправности и работоспособности составных частей машины
- поиск дефектов, в результате которых нарушилась исправность или работоспособность
- сбор исходных данных для прогнозирования остаточного ресурса
Виды диагностирования во время эксплуатации автомобиля
- в процессе технического обслуживания
- заявочное
- ресурсное
Диагностирование в процессе технического обслуживания увязано с системой технического обслуживания конкретной машины.
Заявочное проводится по заявке автомобилиста с целью выявления дефектов.
Ресурсное проводится с целью установления остаточного ресурса детали или соединения.
Виды диагностирования при ремонте автомобиля
Диагностирование перед ремонтом, в технической литературе называемое предремонтным, проводится непосредственно в хозяйствах, использующих технику, или на станциях технического обслуживания.
Диагностирование после ремонта, называемое послеремонтным, выполняется на ремонтных предприятиях с целью оценки качества ремонта и значения восстановленного pecуpca.
Методы диагностирования подразделяются на субъективные (органолептические) и объективные (инструментальные).
К субъективным методам диагностирования относятся:
- внешний осмотр
- прослушивание
- остукиванне
- проверка осязанием и обонянием
Внешним осмотром определяют состояние уплотнений, течь топлива, масла, электролита, повреждение наружных деталей; прослушиванием — стуки, шумы и другие звуки, отличающиеся от нормальных рабочих; остукиванием — резьбовые, заклепочные, шпоночные и сварочные соединения; осязанием — места нагрева деталей, вибрацию, биение, вязкость жидкости; обонянием — состояние муфты сцепления по характерному запаху, течь бензина и т.п.
Для установления количественных изменений параметров технического состояния машины проводят объективное диагностирование, т.е. с помощью специального оборудования и приборов. Технические средства могут быть встроены в машину или подсоединены к ней. К встроенным относятся датчики, сигнальные лампочки, счетчик наработки, сигнализатор засоренности фильтра и др. К подсоединяемым — стенды, приборы, приспособления и т.п.
Методы диагностирования по характеру измерения параметров
- Прямые методы основаны на измерении структурных параметров технического состояния непосредственно прямым измерением (размер детали, зазор в подшипниках, прогиб ремня привода вентилятора и т.д.)
- Косвенные методы основаны на определении структурных параметров состояния составных частей по косвенным (диагностическим) параметрам при установке диагностического устройства без разборки машины. Этими методами определяются физические величины, характеризующие техническое состояние механизмов и систем машины: давление масла, расход газа (топлива, масла), параметры вибрации, ускорение при разгоне двигателя и др.
Техническое диагностирование при эксплуатации машин приурочивается к соответствующему виду технического обслуживания. Это позволяет снизить трудоемкость выполнения операций технического обслуживания, повысить их эффективность и обеспечить безотказность работы объекта до следующего контроля и обслуживания.
Результаты диагностирования заносят в специальную карту, в которой год и дату поступления техники считают от последнего капитального ремонта (или от начала эксплуатации для новых автомобилей). Наработку от начала эксплуатации ставят в том случае, если автомобиль не подвергался капитальному ремонту. В заключение указывают вид ремонта основных агрегатов, либо автомобиля в целом, или же остаточный ресурс и номер очередного технического обслуживания.
Методы диагностирования
Методы диагностирования автотранспортных средств подразделяются на субъективные и объективные. В основе субъективных методов лежат способы определения технического состояния автомобиля по выходным параметрам динамических процессов. Однако получение, анализ информации, а также принятие решения о техническом состоянии производятся с помощью органов чувств человека, что, естественно, имеет достаточно высокую погрешность.
Субъективные методы
Наибольшее распространение получили следующие субъективные методы:
- визуальный
- прослушивание работы механизма
- ощупывание механизма
- заключение о техническом состоянии на основании логического мышления
Визуальный метод дает возможность обнаружить, например, следующие неисправности:
- нарушение уплотнений, трещины, дефекты трубопроводов, соединительных шлангов и т.п. — по течи топлива, масла, эксплуатационных жидкостей
- неполное сгорание топлива — по дымлению из выхлопной трубы
- подтекание форсунок — по повышению уровня масла в поддоне картера двигателя и т.д.
Прослушивание работы механизма позволяет обнаружить следующие неисправности:
- увеличенный зазор между клапанами и коромыслами механизма газораспределения — по стукам в зоне клапанного механизма
- повышенный износ шатунных и коренных подшипников — по стукам в соответствующих зонах кривошипно-шатунного механизма при изменении частоты вращения коленчатого вала
- чрезмерное опережение или запаздывание впрыска топлива — по характеру звука выхлопа (при раннем впрыске — «жесткая работа», при позднем — «мягкая»)
- неисправности сцепления автомобиля — по шуму и стукам при переключении передачи и др.
Методом ощупывания механизма можно определить такие неисправности:
- ослабление креплений — по относительному перемещению деталей
- неисправности отдельных трущихся механизмов и деталей — по чрезмерному их нагреву
- неисправности рулевого механизма — по толчкам на рулевом колесе и др.
На основании логического мышления можно сделать заключение о следующих неисправностях:
- топливной аппаратуры — затруднен пуск двигателя
- системы охлаждения — двигатель перегревается и др.
Объективные методы
Объективные методы основываются на измерении и анализе информации о действительном техническом состоянии элементов автомобиля с помощью контрольно-диагностических средств и путем принятия решения по специально разработанным алгоритмам диагностирования. Применение тех или иных методов существенно зависит от целей, которые решаются в процессе технической подготовки автомобилей. Однако в связи с усложнением конструкции автомобиля, повышенными требованиями к эксплуатационным качествам, интенсивностью использования объективные методы диагностирования находят все большее применение.
Методы диагностирования автомобилей, их агрегатов и узлов характеризуются способом измерения и физической сущностью диагностических параметров, наиболее приемлемых для использования в зависимости от задачи диагностирования и глубины постановки диагноза.
В настоящее время принято выделять три основные группы методов, классифицированных по виду диагностических параметров.
Методы I группы базируются в основном на имитации скоростных и нагрузочных режимов работы автомобиля и определении при заданных условиях выходных параметров. Для этих целей используются стенды с беговыми барабанами или параметры определяются непосредственно в процессе работы автомобиля на линии. Методы диагностирования по параметрам эксплуатационных свойств дают общую информацию о техническом состоянии автомобиля. Они позволяют оценить основные эксплуатационные качества автомобиля:
- тормозные
- мощностные
- топливную экономичность
- устойчивость и управляемость
- надежность
- удобство пользования
- и т.д.
Методы II группы базируются на объективной оценке геометрических параметров в статике и основаны на измерении значения этих параметров или зазоров, определяющих взаимное расположение деталей и механизмов. Проводят такое диагностирование в случае, когда измерить эти параметры можно без разборки сопряжений трущихся деталей. Структурными параметрами могут быть зазоры в подшипниковых узлах, клапанном механизме, кривошипно-шатунной и поршневой группах двигателя, шкворневом соединении колесного узла, рулевом управлении, углы установки передних колес и др. Диагностирование по структурным параметрам производится с помощью измерительных инструментов: щупов, линеек, штангенциркулей, нутромеров, индикаторов часового типа, отвесов, а также специальных устройств. Преимущество методов этой группы — возможность постановки точных диагнозов, простота средств измерения, а недостатки — большая трудоемкость, малая технологичность.
К III группе относятся методы, оценивающие параметры сопутствующих процессов. Например, герметичность рабочих объемов оценивается при обнаружении и количественной оценке утечек газов или жидкостей из рабочих объемов, узлов и агрегатов автомобиля. К таким рабочим объемам можно отнести:
- камеру сгорания
- герметичность которой зависит от состояния цилиндропоршневой группы и клапанов газораспределения
- систему охлаждения
- систему питания двигателя
- шины
- гидравлические и пневматические приборы и механизмы
По интенсивности тепловыделения можно оценить работу трения сопряженных поверхностей деталей, качество процессов сгорания (например, по температуре отработавших газов), однако такие методы пока не нашли широкого применения.
При создании средств технического диагностирования транспортных средств широко используются также методы, оценивающие состояние узлов и систем по параметрам колебательных процессов. Их можно разделить на три подвида:
- методы, оценивающие колебания напряжения в электрических цепях
- методы, оценивающие параметры виброакустических сигналов (получаемых при работе зубчатых зацеплений, клапанных механизмов, подшипников и т.д.)
- методы, оценивающие пульсацию давления в трубопроводах (на основе этого принципа работают дизель-тестеры для диагностирования дизельной топливной аппаратуры)
Методы, с помощью которых оцениваются колебания напряжения в электрических цепях, используются для диагностирования системы зажигания двигателя по характерным осциллограммам напряжений в первичной и вторичной цепях. Осциллографом отображаются процессы, протекающие в первичной и вторичной цепях системы зажигания за время между последовательными искровыми разрядами в цилиндрах, для визуального исследования. Участки осциллограмм содержат информацию о состоянии системы зажигания. По осциллограмме первичного напряжения непосредственно измеряют угол замкнутого состояния контактов. По напряжению искрового разряда осциллограммы вторичного напряжения определяют состояние зазора свечи. Сравнивая полученные осциллограммы с эталонными, выявляют характерные неисправности проверяемой системы зажигания.
Виброакустические методы используются для измерения низко- и высокочастотных колебаний систем и элементов транспортных средств.
Одним из таких методов является диагностирование по периодически повторяющимся рабочим процессам или циклам. Суть данного метода заключается в следующем. Рабочие процессы впуска, сжатия, сгорания и выпуска, изменение давления в топливных трубопроводах высокого давления, колебательные процессы в системе зажигания и другие часто повторяются. Так как закономерности изменения параметров рабочих процессов во всех периодах идентичны, то для диагностирования достаточно изучить параметры одного цикла. Для этого с помощью специальных преобразователей параметры одного цикла задерживают, разворачивают во времени и выводят на регистрирующий или показывающий прибор.
Определенное место занимают методы, оценивающие по физико-химическому составу отработавших эксплуатационных материалов состояние узлов и агрегатов и отклонения от их нормального функционирования, например анализ отработанного масла, анализ отработавших газов и т.п. Диагностирование по составу масла производится путем анализа его проб, взятых из картера двигателя с целью определения количественного содержания продуктов износа деталей, а также наличия загрязнений и примесей. Концентрации железа, алюминия, кремния, хрома, меди, свинца, олова и других элементов в масле позволяют судить о скорости изнашивания деталей. По изменению концентрации железа в масле можно судить о скорости изнашивания гильзы цилиндров, шеек коленчатого вала, поршневых колец. По изменению концентрации алюминия судят о скорости изнашивания поршней и других деталей. Содержание почвенной пыли характеризует состояние воздушных фильтров и герметичность тракта подачи воздуха в цилиндр двигателя.
Лекция 7. Методы и средства технического диагностирования
Техническая диагностика представляет собой систему методов, применяемых для установления и распознания признаков, характеризующих техническое состояние оборудования. Все методы технического диагностирования разделяются на субъективные (органолептические) и объективные (приборные).
Несмотря на развитие аппаратных средств измерений и контроля, большая роль в определении неисправностей и нахождении повреждений механического оборудования приходится на субъективные методы, предполагающие использование человеческих органов чувств. Комплекс таких органолептических методов контроля получил название осмотр. Осмотр, включает в себя элементы визуального, измерительного контроля, восприятия шумов и вибраций, оценку степени нагрева корпусных деталей, методы осязания, используемые для определения фактического состояния оборудования и его составных частей, процессов их функционирования и взаимодействия, влияния окружающей среды и условий эксплуатации.
Органолептические методы
Органолептический метод (органо- + греч. leptikos – способный взять, воспринять) основан на анализе информации, воспринимаемой органами чувств человека (зрение, обоняние, осязание, слух) без применения технических измерительных или регистрационных средств. Эта информация не может быть представлена в численном выражении, а основывается на ощущениях, генерируемых органами чувств. Решение относительно объекта контроля принимается по результатам анализа чувственных восприятий. Поэтому точность метода существенно зависит от квалификации, опыта и способностей лиц, проводящих диагностирование. При органолептическом контроле могут использоваться технические средства, не являющиеся измерительными, а лишь повышающие разрешающие способности или восприимчивость органов чувств (лупа, микроскоп, слуховая трубка и т.п.).
Принятие решения имеет характер «соответствует – не соответствует» и определяется диагностическими правилами типа «если – то», имеющими конкретную реализацию для узлов механизма. Практически, происходит оценка состояния оборудования по двухуровневой шкале – продолжать эксплуатацию или необходим ремонт. Основная цель – обнаружение отклонений от работоспособного состояния механизма. Решение о техническом состоянии механизма принимает технологический или ремонтный персонал, обслуживающий оборудование на основании опыта и производственной ситуации. Принимается решение об остановке оборудования для визуального осмотра и последующего ремонта, продолжения эксплуатации или проведения диагностирования с использованием приборных методов.
Практический опыт показывает, что невозможно заменить механика с его субъективизмом, основанном на знании особенностей эксплуатации и ремонта оборудования. Этот метод является первым уровнем решения задач диагностирования. Стандартами, использование органолептического метода контроля не регламентируется, однако в практике работы служб технического обслуживания он применяется повсеместно. Основываясь на опыте эксплуатации металлургических машин накопленным рядом фирм, данный метод интерпретируется следующим образом.
Основные органолептические методы, используемые при оценке технического состояния механического оборудования.
- Анализ шумов механизмов проводится по двум направлениям:
1.1 Акустическое восприятие, позволяющее оценивать наиболее значимые повреждения, меняющие акустическую картину механизма. Весьма эффективно при определении повреждений муфт, дисбаланса или ослабления посадки деталей, обрыве стержней ротора, ударах деталей. Диагностические признаки – изменение тональности, ритма и громкости звука.
1.2 Анализ колебаний механизмов. В этом методе механические колебания корпусных деталей преобразуются в звуковые колебания при помощи технических или электронных стетоскопов. Электронные средства позволяют расширить возможности человеческого восприятия.
- Контроль температуры позволяет оценить степень нагрева корпусных деталей по уровням «холодно», «тепло», «горячо». «Холодно» – температура менее +20 0 С, «тепло» – температура +30…40 0 С, «горячо» – температура свыше +50 0 С.
Пределом для непосредственного восприятия является температура +60 0 С – выдерживаемая, у большинства тыльной стороной ладони без болевых ощущений в течение 5 с. Использование дополнительных средств – брызг воды позволяет контролировать значения +70 0 С – видимое испарение пятен воды и +100 0 С – кипение воды внутри капли на поверхности корпусной детали. Недопустимым является прикосновение к вращающимся и токоведущим деталям.
- Восприятие вибрации основано на тактильном анализе (как реакции соприкосновения), как и контроль температуры. Значения параметров вибрации субъективно оценить нельзя. Возможен сравнительный анализ вибрации. Абсолютная оценка практически всегда содержит грубые ошибки из-за различных ощущений человека и широкого спектрального состава вибрации. В высокочастотном диапазоне возможности человека по восприятию вибрации ограничены. В низкочастотном диапазоне возможности человека по восприятию вибрации существенно различаются из-за различного уровня подготовки.
- Визуальный осмотр механизма предоставляет большую часть информации о техническом состоянии. Осмотр может проводиться в динамическом режиме (при работающем механизме) и в статическом (при остановленном механизме).
- Методы осязания используются при оценке волнистости, шероховатости, качестве смазочного материала, его вязкости, пластичности, наличии посторонних включений, для оценки шероховатости поверхности поврежденных деталей.
Приборные методы
Наряду с органолептическими методами при техническом диагностировании используются приборные методы, позволяющие получить количественную оценку измеряемого параметра. Диагностирование с применением приборов основано на получении информации в виде электрических, световых, звуковых сигналов, отображающих изменение состояния объекта. В зависимости от физической природы измеряемых параметров различают:
- Механический метод – основан на измерении геометрических размеров, зазоров в сопряжениях, давлений и скорости элементов. Применяется при количественной оценке износа деталей, установлении люфтов и зазоров в сопряжениях, давлениях в гидро- и пневмосетях, сил затяжки резьбовых соединений, номинальной скорости привода. Используется разнообразный мерительный инструмент и приборы: линейки, штангенциркули, щупы, шаблоны, индикаторы перемещения часового типа, динамометрические ключи, ключи предельного момента, манометры.
- Электрический метод (ваттметрия) заключается в измерении: силы тока, напряжений, мощности, сопротивлений и других электрических параметров. Метод позволяет по косвенным параметрам установить техническое состояние механизма. Средства для реализации: амперметры; вольтметры; измерительные мосты; датчики: перемещений, крутящих моментов, давлений; тахогенераторы; термопары.
- Тепловой метод (термометрия) – основан на измерении температурных параметров диагностируемого объекта. С помощью термометрии определяются: деформации, вызываемые неравномерностью нагрева, состояние подшипниковых узлов, смазочных систем, тормозов, муфт. Используются: термосопротивления, термометры, термопары, термоиндикаторы, термокраски, тепловизоры.
- Виброакустические методы (виброметрия) основаны на измерении упругих колебаний, распространяющихся по узлам в результате соударения движущихся деталей при работе механизмов. Область применения: оценка и контроль механических колебаний; определение, распознавание и мониторинг развития повреждений в деталях и конструкциях. Используются: шумомеры, виброметры, спектроанализаторы параметров виброакустического сигнала.
- Методы анализа смазки основаны на определении вида и количества продуктов изнашивания в масле. Применяются способы: колориметрический, полярографический, магнитно-индукционный, радиоактивный и спектрографический.
- Методы неразрушающего контроля: магнитные, вихретоковые, ультразвуковые, контроля проникающими веществами, радиационные, радиоволновые. Методы используются для определения целостности отдельных деталей механизма.
Классификация диагностических приборов может быть проведена по следующим признакам: цифровые и аналоговые, показывающие и сигнализирующие, универсальные и специализированные, стационарные и переносные и др.
Однако, все средства технического диагностирования, используемых для диагностики механического оборудования, по уровню решаемых задач и приборной реализации можно разделить на: портативные, анализаторы и встроенные системы.
Портативные средства технического диагностирования реализуют измерение одного или нескольких диагностических параметров, характеризуются малыми габаритами и отсутствием обмена данных с компьютерными системами (рисунок 40). К их преимуществам относятся: быстрота процесса измерения, простое обслуживание и управление, оперативное и наглядное получение информации в виде одиночного результата, низкая стоимость. Область применения – оперативный контроль технического состояния оборудования работниками ремонтных служб и технологическим персоналом.