Меню

Газы для газотурбинных двигателей

Газотурбинный двигатель принцип работы

Газотурбинный двигатель: принцип работы и конструкция

Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины.

И это связано не только с несомненными преимуществами данного агрегата.

Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.

Конструкция

Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.

Материалы

Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.

Газотурбинный двигатель: принцип работы устройства

Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.

Отличительные свойства

Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то, что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество.

И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.

Принцип работы газотурбинного двигателя

Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно.

В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах.

Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.

Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).

На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:

• условиями сжигания топлива — с внутренним и внешним сжиганием;

• использованием рабочего тела в круговом процессе — разомкнутые и замкнутые системы;

• количеством валов — одновальные, двух- и многовальные.

Рис. 2. Принципиальная схема одновального газотурбинного двигателя:

1 — корпус газовой турбины; 2 — рабочее колесо газовой турбины; 3 — топливный насос; 4 — свободный вал; 5— воздушный компрессор; 6 — воздухозаборное устройство воздушного компрессора; 7— электрическая свеча зажигания; 8— камера сгорания; 9 — направляющий аппарат; 10 — газоотвод; II — потребитель мощности; 12 — пусковой двигатель

В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500. 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.

Читайте также:  Отвод выхлопных газов от машины

Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33. 40 %.

Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.

Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.

Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.

Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.

Сфера использования газотурбинных двигателей

На сегодняшний день существует несколько различных видов двигателей, которые отличаются друг от друга по принципу работы. Один из них — газотурбинный двигатель. Он создан таким образом, что, переняв все ключевые достоинства бензиновых и дизельных поршневых двигателей, получил ряд неоспоримых преимуществ.

Газотурбинный двигатель, принцип работы которого заключается в проведении топлива через ряд турбинных лопастей, приводит их в движение с помощью расширяющегося газа. Он относится к моделям внутреннего сгорания. Газотурбинные двигатели делятся на одно- и двухвальные. Их КПД прямо пропорционален температуре сгорания топлива. Самые элементарные модели — одновальные, имеющие единственную турбину. Двухвальные не только сложнее в устройстве, но и способны выдерживать большие нагрузки.

Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.

В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.

Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.

Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.

Газотурбинный двигатель подробно

ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с ). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.

Читайте также:  Навес для автомобиля является строением

Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).
Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).

Читайте также:  Продажи машину пробегом газ

Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Большую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:
Дизель 0,26—0,35
Двигатель бензиновый 0,22—0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15—0,25
Газовая турбина со свободно-поршневым генератором газа 0,25—0,35

Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.

Схема реального газотурбинного двигателя

Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.

Adblock
detector