Меню

Газотурбинный двигатель газоперекачивающего агрегата

ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ

ЧТО ЭТО ТАКОЕ?

Все современные типы ГПА оснащены системами автоматики, обеспечивающими пуск и работу агрегата в автоматическом режиме, имеют защиту при возникновении аварийных режимов, сигнализацию о неисправностях, автоматическое поддержание заданной температуры и давления масла при аварийной остановке агрегата и другие конструктивные особенности, обеспечивающие надежность эксплуатации.

Газоперекачивающие агрегаты (ГПА) — это сложные энергетические установки, предназначенные для компримирования природного газа, поступающего на компрессорную станцию по магистральному газопроводу .

ДЛЯ ЧЕГО ОНИ НУЖНЫ?

Задача газоперекачивающих агрегатов на компрессорных станциях — повышение давления голубого топлива до заданной величины. Для транспортировки газа по магистральным газопроводам применяют ГПА с газотурбинными авиационными и судовыми, а также электрическими двигателями. Наиболее распространённым приводом является газотурбинный.

Рабочий процесс газотурбинных агрегатов осуществляется в несколько этапов. Перекачиваемый газ по газопроводу через всасывающий трубопровод ГПА поступает в центробежный нагнетатель. Здесь происходит компримирование газа и его подача в нагнетательный коллектор компрессорной станции. Приводом механизма сжатия газа как раз является газотурбинный двигатель, использующий в качестве топлива очищенный и приведенный к рабочему давлению перекачиваемый газ. Очищенный атмосферный воздух поступает на вход газотурбинного двигателя, снабженного традиционными техническими средствами подготовки и сжигания топливовоздушной смеси. Продукты сгорания, имеющие высокую температуру и давление и, следовательно, обладающие большой энергией, формируют газовый поток, энергия которого, в конечном итоге, преобразуется в механическую работу. Именно она и используется для приведения в действие центробежного нагнетателя. При движении газового потока через проточную часть газотурбинного двигателя уменьшается его энергия, и снижаются температура и давление. После этого отработанный газ через выхлопную систему выходит в атмосферу.

Конструкция агрегатов и уровень их автоматизации обеспечивают работоспособность ГПА без постоянного присутствия персонала. Агрегаты могут работать в климатических зонах с температурой окружающего воздуха от — 55 до + 45 градусов по Цельсию.

Устройство газоперекачивающего агрегата с авиаприводом

КАК ОНИ УСТРОЕНЫ?

Основные элементы газоперекачивающего оборудования — это нагнетатель природного газа (компрессор) и его привод, всасывающее и выхлопное устройства, маслосистема, топливовоздушные коммуникации, автоматика и вспомогательное оборудование.

Классификацию ГПА осложняет многообразие конструкций установок. Однако их можно сгруппировать по функциональному признаку, принципу действия и типу привода.
Функциональный признак определяет область применения агрегатов — на головных, линейных или дожимных компрессорных станциях . Принцип действия ГПА — объемный или динамический — важен при определении производительности КС . По типу привода агрегаты подразделяются на установки с использованием авиационных, электрических и судовых двигателей.

КАК У НАС?

В ООО «Газпром трансгаз Ставрополь» эксплуатируется 12 компрессорных станций с 10 типами газоперекачивающих агрегатов. ГПА оснащены различными видами двигателей: газотурбинными авиационными и судовыми, а также электрическими. Всего в работе на компрессорных станциях Общества 113 газотурбинных установок. Их общая установленная мощность более 1000 МВт. Большая часть ГПА оснащена авиационными двигателями. Мощность агрегатов варьируется от 4 до 18 МВт. Самые мощные ГПА эксплуатируются на ДКС-1.

Все о транспорте газа

Газотурбинная установка (ГТУ) — машина, преобразующая тепловую энергию в механическую и состоящая из одного или нескольких компрессоров (чаще осевого типа), теплового устройства для нагрева рабочего тела, одной или нескольких турбин, системы регулирования и необходимого вспомогательною оборудования (рис. 1). Полезная мощность в ГТУ совершается за счет внутренней энергии газового потока, поступаюшего с большой скоростью на лопатки ротора турбины.

При работе турбины атмосферный воздух засасывается в осевой компрессор 3, сжимается и поступает в камеру сгорания 1. Одновременно часть воздуха направляется в кольцевое пространство между стенкой и корпусом камеры сгорания. Внутрь камеры сгорания непрерывно поступает топливо, сгорающее при постоянном давлении. Поэтому из камеры сгорания непрерывной струей выходят продукты сгорания, направляющиеся в сопла. В соплах энергия давления в результате расширения газа преобразуется в кинетическую энергию газовой струи, поступающей на лопатки турбины. Воздух, омывающий жаровую трубу камеры сгорания, охлаждает ее и, смешиваясь с продуктами сгорания, выходящими из жаровой трубы, также поступает в турбину 2. Примешивание этой доли воздуха к продуктам сгорания, имеющим высокую температуру — около 1800-2000 °С, необходимо для снижения температуры газов до величины, безопасной для металла лопаток газовой турбины. Поэтому общее количество воздуха, сжимаемого втурбокомпрессоре 3, значительно (в 6 раз и более) превышает количество воздуха, теоретически необходимого для сгорания топлива.

Читайте также:  Машины с датчиком давления шин

Общее представление о принципах работы турбины можно получить при рассмотрении устройства простейшей активной турбины (рис. 2).

На валу 1 насажен диск 2, по ободу которого на равных расстояниях закреплены рабочие лопатки . Слева от рабочих лопаток в корпусе 5 размешено сопло 4, представляющее собой криволинейный канал плав­ного очертания. При постоянном расходе газа за счет сужения канала в пределах сопла скорость потока возрастает, а давление уменьшается от р до р1 . Следовательно, в пределах сопла потенциальная энергия потока превращается в кинетическую.

При выходе из сопла поток газа попадает на рабочие лопатки под та­ким углом наклона a 1 , который обеспечивает плавное скольжение по­тока в межлопаточных каналах. При движении потока вдоль изогнутого контура рабочих лопаток возникают элементарные силы, результирую­щая которых представляет собой усилие, вращающее лопатки, т. е. ме­ханическую работу. Механическая работа потокагаза на лопатках опре­деляется только вращающим усилием и частотой вращения. При враща­тельном движении рабочих лопаток скорость газа при выходе из них меньше скорости на входе. Это означает, что на рабочих лопатках проис­ходит второе превращение энергии — кинетическая энергия потока газа частично переходит в механическую энергию вращения лопаток.

Турбины, в которых поток газа движется параллельно валу, назы­вают аксиальными, а турбины, в которых поток газа движется перпен­дикулярно к валу, — радиальными. Заводы выпускают в основном аксиальные газовые турбины.

Смежные ряды сопел и рабочих лопаток образуют одну ступень давления. Поэтому турбину такого типа называют одноступенчатой. Диаметр диска 2, измеренный по средней высоте рабочих лопаток d , называют расчетным диаметром ступени давления. Между вращающими­ся и неподвижными деталями всегда имеются зазоры (см. рис. 2) в ра­диальном и аксиальном направлениях.

На графике изменения давления и абсолютных скоростей газа в ак­тивной одноступенчатой турбине (см. рис. 2) видно, что давление падает только в соплах, где и происходит увеличение абсолютной скорости по­тока с с до с1 . На рабочих лопатках, в зазоре между соплами и лопат­ками давление практически постоянно. Отдельные ступени или турбины в целом, в которых давление потока газа на рабочих лопатках остается постоянным, называются активными. Те же ступени или турбины в це­лом, в которых давление меняется и в соплах и на рабочих лопатках, называются реактивными.

При однократном расширении в соплах одноступенчатой гурбины скоростью газа при входе его на рабочие лопатки оказывается настолько большой, что на одном ряду лопаток достаточно полно использовать ее нельзя. Поэтому одноступенчатые турбины применяют в основном для привода различных вспомогательных устройств.

На рис.3 в продольном разрезе и развертке по окружности проточ­ной части дана схема активной турбины с двумя ступенями скорости. (Обозначения 1 соответствуют обозначениям на рис. 2). Газ из перво­го ряда рабочих лопаток поступает в неподвижные напщие ло­патки 7. Эти лопатки сходны по профилю с рабочими лопатками, но изогнуты в противоположную сторону. Направляющие лопатки крепят в корпусе 5 турбины против сопел. Далее газ поступает на второй ряд рабочих лопаток 6. Такой двукратный пропуск потока по рабочим лопаткам позволяет уменьшить потерю кинетической энергии с выходной скоростью и этим увеличить к.п.д. На графике изменения давления и абсолютных скоростей газа по ступеням турбины (см. рис. 3) видно, что расширение газа происходит только в соплах, т. е. эта турбина является активной. Поэтому абсолютная скорость потока газа достигает максимального значения с 1 , при выходе из сопел. Далее поток газа попадает на рабочие лопатки первой ступени скорости, где совершает работу. Абсолютная скорость при выходе с 2 еще довольно велика. Поток далее попадает в направляющие лопатки, где его абсолютная скорость несколько уменьшается от с2 до с` 1 за счет потерь, а затем газ поступает нa рабочие лопатки второй ступени Здесь совершается дополнительная работа, соответствующая уменьшению абсолютной скорости от c` 1 до с` 2 . Во всех зазорах давление принимается постоянным.

Читайте также:  Устройство двигателя для стеклоочистителей

Наклон линии абсолютной скорости на рабочих лопатках первой и второй ступеней и на направляющих лопатках различен. Это связано с тем, что на рабочих лопатках скорость уменьшается и при превращении в механическую работу и ввиду потерь, между тем как в направляющих лопатках уменьшение скорости происходит только за счет потерь.

Рабочие лопатки ступеней скорости для уменьшения стоимости и упрощения конструкции почти всегда ставят на общем диске, который называют диском Кертиса. Принцип работы реактивных и комбинированных турбин.

В реальных ГТУ, эксплуатируемых на компрессорных станциях, используют в основном комбинированные ступени, т.е. ступени с определенной степенью реакции. Поток газа воздействует на рабочие лопатки реактивной турбины не только но причине изменения скорости, приобретенной в соплах (активное усилие), но также и вследствие реакции потока газа. Это воздействие возникает в них при уменьшении давления и увеличении за счет этого относительной скорости (реактивное усилие) . Реактивное усилие аналогично отдаче ружья при выстреле.

Газоперекачивающий агрегат (ГПА)

Газоперекачивающий агрегат (ГПА) — предназначен для компримирования природного газа на компрессорных станциях

ГПА состоит из нагнетателя природного газа, привода нагнетателя, всасывающего и выхлопного устройств (в случае газотурбинного привода), систем автоматики, маслосистемы, топливовоздушных и масляных коммуникаций и вспомогательного оборудования.

ГПА различают: по типу нагнетателей — поршневые газомоторные компрессоры (газомотокомпрессоры) и ГПА с центробежными нагнетателями; по типу привода — ГПА с газовым двигателем внутреннего сгорания (газомоторные двигатели), с газотурбинным приводом, с электроприводом.

ГПА с газотурбинным приводом, в свою очередь, подразделяются на агрегаты со стационарной газотурбинной установкой и с приводами от газотурбинных двигателей авиационного и судового типов.

Поршневой газомоторный компрессор — ГПА, состоит из двухтактного или четырехтактного газомоторного двигателя (или электродвигателя) и непосредственно соединённого с ним горизонтального поршневого компрессора. Подразделяются на агрегаты низкого, среднего и высокого давлений.

Компрессоры низкого давления (0,3-2 МПа) используются главным образом на головных компрессорных станциях при транспортировке газа с истощённых месторождений и нефтяного газа с промыслов.

Применяют их также на компрессорных станциях для подачи низконапорных искусственных горючих газов.

Компрессоры среднего давления (2-5 МПа) работают в основном на промежуточных компрессорных станциях для увеличения пропускной способности газопроводов. Агрегаты высокого давления (9,8-12 МПа) устанавливают на компрессорных станциях для закачки газа в подземные хранилища.

Газомотокомпрессоры высокоэффективны в условиях переменных мощностей и степеней сжатия свыше 1,3. Основные достоинства этих ГПА: надёжность в эксплуатации; длительный срок службы; способность работать в широком диапазоне давлений; возможность регулирования производительности за счёт изменения оборотов агрегатов и объёма т.н. вредного пространства в компрессорных цилиндрах, а также возможность создания больших давлений в них. Кпд современных газомотокомпрессоров до 40%. В CCCP были наиболее распространены агрегаты мощностью 221-5510 кВт, за рубежом — 368 и 8100 кВт.

Читайте также:  Права потребителя при некачественном ремонте автомобиля

ГПА с центробежным нагнетателем широко применялись в CCCP и за рубежом на магистральных газопроводах в качестве основных агрегатов; их также используют для работы в качестве первой ступени сжатия на подземных хранилищах. Различают центробежные нагнетатели одноступенчатые (неполнонапорные) со степенью сжатия 1,23-1,25 и двухступенчатые (полнонапорные) -1,45-1,7. Центробежные нагнетатели характеризуются значительно большей, чем у поршневых компрессоров, производительностью (12-40 млн. м 3 /сутки).

В них отсутствуют внутренние трущиеся части, требующие смазки (за исключением подшипников), создаётся равномерный (без пульсации) поток газа.

Для их установки (в связи с малым весом и габаритами, а также уравновешенностью вращающихся частей) требуются меньшие помещения и сооружаются облегчённые фундаменты. При применении ГПА с центробежными нагнетателями вследствие их большой производительности упрощается технологическая схема компрессорных станций, уменьшается количество запорной арматуры и др.

Недостаток неполнонапорных центробежных нагнетателей — необходимость включения в работу 2 х последовательно соединённых агрегатов для достижения степени сжатия газа 1,45-1,5. Это приводит к увеличенному расходу топливного газа в газотурбинной установке. Кпд агрегатов с центробежными нагнетателями до 29%, с регенератором тепла до 35%. Приводом ГПА служит газотурбинная установка или электродвигатель. В CCCP изготовливались ГПА с газотурбинным приводом мощностью 6, 10, 16 и 25 тысяч кВт.

Газотурбинные установки авиационного и судового типов отличаются (от стационарных) небольшими габаритами и массой, что позволяет осуществлять их окончательную сборку на заводах-изготовителях и поставлять на компрессорные станции в готовом виде. ГПА с приводом от установок авиационного типа выполняются в блочно-контейнерном варианте . Поставляются на компрессорные станции со встроенными в них системами пожаротушения и взрывобезопасности. В качестве электропривода в ГПА используют асинхронные двигатели мощностью 4500 кВт и синхронные от 4000 до 12500 кВт. Наибольшая эффективность применения ГПА с электроприводом достигается при расположении компрессорных станций не далее 300 км от линии электропередач.

Для ГПА всех типов созданы системы автоматики, обеспечивающие пуск и работу агрегата в автоматическом режиме, защиту при возникновении аварийных режимов, сигнализацию о неисправностях и действии защит, контроль объёмной производительности нагнетателя, автоматическое поддержание заданной температуры и давления масла при аварийной остановке агрегата и др.

Каждый тип компрессоров имеет индивидуальные особенности как конструктивного, так и функционального характера. Именно поэтому, когда вы выбираете компрессор для ГПА или дожимной компрессорной установки, важно в полной мере учитывать условия его работы и требования, предъявляемые к его техническим характеристикам.

Наибольшее значение имеют следующие параметры:

  • объем перекачиваемого газа;
  • давление и температура газа на входе/выходе;
  • химический состав и влажность перекачиваемого газа;
  • характеристики места инсталляции ГПА (максимальная и минимальная температура воздуха, высота над уровнем моря);
  • тип используемого привода;
  • предполагаемая годовая наработка в часах;
  • класс исполнения (взрывозащищенный, сейсмостойкий и др.);
  • допустимое содержание масла в газе на выходе;
  • тип автоматики (электрическая или пневматическая).

Определенные виды компрессоров лучше использовать в следующих условиях:

  • Компрессор поршневой — высокие степени повышения давления и высокие абсолютные давления, переменные режимы, сравнительно небольшие потоки и мощности (до 6 МВт).
  • Компрессор винтовой — высокие степени повышения давления при небольших абсолютных давлениях и небольших перепадах давления, переменные режимы, сравнительно небольшие потоки и мощности (до 2000 кВт).
  • Компрессор центробежный — большие потоки и мощности, предпочтительно небольшие степени повышения давления и невысокие абсолютные давления, постоянные режимы.

ГПА различают по типу привода — ГПА c газовым двигателем внутреннего сгорания (газомоторные двигатели), c газотурбинным приводом, c электроприводом.

Adblock
detector