Меню

Газоанализатор для диагностики автомобилей

Использование газоанализатора при диагностике ДВС, системы управления и зажигания.

ГАЗОАНАЛИЗАТОР — измерительный прибор для определения качественного и количественного состава смесей газов в выхлопе автомобиля. Неверно думать, что газоанализатор полезен только при экологическом контроле. Он не менее широко применяется и в диагностике. От других диагностических приборов, совместно с которыми он должен использоваться, газоанализатор отличается максимальной степенью универсальности — он одинаково может использоваться при диагностике любых бензиновых двигателей (не важно на чем стоит этот двигатель — на «Жигулях» или «Мерседесе»).

Устаревшее представление, что газоанализатор служит только для регулировки и контроля токсичности выхлопных газов, не позволяет многим автомеханикам правильно оценить состояние двигателя и систем зажигания. Да и проблема экологии работников автосервиса часто мало волнует. Для опытного автодиагноста четырех компонентный газоанализатор служит своего рода «глазами», позволяя «заглянуть» внутрь камер сгорания работающего двигателя и определить, как идет процесс горения топливно-воздушой смеси. Именно от течения этого процесса зависят главные показатели ДВС — мощность и экономичность. В результате полного, сгорания топливно-воздушной смеси должны получиться углекислый газ (СО2) и вода, но «мир не идеален». Поэтому, основываясь на показаниях газоанализатора о количественном содержании компонентов в выхлопных газах, можно произвести необходимые регулировки для получения оптимального соотношения мощности и экономичности, а так же оценить состояние клапанов, цилиндропоршневой группы и сделать вывод о необходимости ремонта. Кроме того, правильно отрегулированные системы топливоподачи и зажигания при исправном двигателе дают минимальный выброс вредных веществ в атмосферу.

В современных автомобилях с микропроцессорной системой управления двигателем, диагностируемых при помощи сканеров, четырех компонентный газоанализатор значительно увеличивает вероятность нахождения неисправности в двигателе, так как ведет непосредственно измерение параметров, а не считывание информации из электронного блока управления, и значительно сокращает время на поиск неисправности.

Бензин, как моторное топливо, обладает хорошей испаряемостью и высокой скоростью сгорания. Распыленные частицы бензина во взвешенной смеси с атмосферным воздухом при определенных условиях образуют горючую топливовоздушную смесь (ТВС), которая легко воспламеняется от электрической искры в камерах сгорания ДВС. Наиболее благоприятным условием воспламенения хорошо перемешанной (гомогенной) смеси является весовое соотношение в ней бензина и воздуха, равное 1/14.5 (для высокооктановых сортов бензина ТВ-смесь с таким соотношением компонентов называется стехиометрической и, с точки зрения эффективности и полноты сгорания бензина является идеальной). Качество ТВ-смеси принято оценивать коэффициентом избытка воздуха α- (альфа), который определяется как α=Мф/Мт, где Мф — фактически затраченное, а Мт -теоретически необходимое количество массы воздуха для полного сгорания данной порции бензина. Когда ТВ-смесь стехиометрическая, то Мф=Мт и коэффициент избытка воздуха α=1. Если Мф>Мт, то ТВ-смесь обогащена воздухом, но называется «бедной» ТВ-смесью, так как обеднена бензином. При этом α>1. При Мф 1,5%) приводит к перерасходу топлива в городском цикле и провалу в начале движения дроссельной заслонки. Если не удается отрегулировать винтом качества смеси карбюратор на предмет снижения СО до необходимого уровня, то наиболее вероятными причинами могут быть:

  1. повреждение уплотнительного кольца на винте качества
  2. завышенный уровень топлива в поплавковой камере
  3. увеличенный размер главного топливного жиклера
  4. заедание в приоткрытом состоянии заслонки во вторичной камере
  5. засорился воздушный фильтр или жиклер

На автомобилях, оборудованных системой впрыска топлива в этом случае возможны неисправности:

  1. потенциометра СО
  2. датчика массового расхода воздуха
  3. лямбда-зонда
  4. датчика температуры охлаждающей жидкости (показывает заниженную температуру)

Заниженное значение СО ( 1000 ррт СО2 — 6-8%

CO CH CO2 O2
X.X. 1000ppm 6-8% 7-9%

При впрысковом двигателе показание ДМРВ при этом будет завышено, а длительность впрыска увеличена.

При сбоях в системе зажигания параметры приблизительно таковы:

CO CH CO2 O2
X.X. 0,8-1,0% 600-800ppm 10-11% 3-4%
ср. об. >0,1% 1000-1500ppm 9-10% 5-6%

При неправильно отрегулированных клапанах показания газоанализатора будут близки к приведенным выше при сбоях в системе зажигания.

Газоанализ и диагностика

На современном диагностическом участке газоанализатор является одним из базовых приборов.

Назначение газоанализатора

К сожалению, в сознании многих специалистов автосервиса газоанализатор по-прежнему ассоциируется с регулировкой карбюратора. Это не так.

Конечно, контроль токсичности отработанных газов (ОГ) – важная функция автомобильного газоанализатора, но, тем не менее, далеко не единственная.

Прибор способен решать широкий круг задач по исследованию состояния двигателя и его систем, являясь богатейшим источником диагностической информации. Можно с уверенностью утверждать, что газоанализатор — один из основных инструментов диагноста.

Как врачу для постановки диагноза необходимы анализы пациента, так и диагносту нужны данные «анализа», чтобы выявить «болезни» двигателя, ведь состав ОГ напрямую зависит от его состояния.

Эволюция газоанализатора

Первые образцы газоанализаторов, применявшиеся для регулировки двигателя, из всей совокупности компонентов ОГ измеряли только концентрацию оксида углерода СО. Приборы были однокомпонентными.

Анализ концентрации СО позволял сделать вывод о качественном соотношении топливно-воздушной смеси и применялся в основном при регулировке карбюраторов. Такие газоанализаторы имели стрелочное отображение результатов анализа и работали на принципе измерения электрической проводимости платиновой спирали в среде оксида углерода.

К 70-м годам прошлого века остро встал вопрос необходимости контроля автомобильных токсичных выбросов. Уровень развития техники тех лет позволил создать двухкомпонентные автомобильные газоанализаторы, способные измерить концентрацию еще одного вредного компонента – несгоревшего топлива, обозначаемого СН. Эти приборы работали на принципе спектрометрирования исследуемых газов в инфракрасном диапазоне, который используется по настоящее время.

Дальнейшее развитие автомобильных газоанализаторов привело к появлению трех-, четырех- и даже пятикомпонентных приборов, позволяющих измерить концентрацию не только названных выше оксида углерода СО и углеводородов СН, но и диоксида углерода СО2, кислорода О2 и оксидов азота NОx, а также рассчитать соотношение воздух-топливо в исходной топливно-воздушной смеси.

Спектрометрический блок газоанализатора: принцип действия

Принцип действия спектрометрического блока газоанализатора основан на эффекте частичного поглощения энергии светового потока, проходящего через газ.

Читайте также:  Кто производит масло мотор

Молекулы каждого газа представляют собой колебательную систему, способную поглощать инфракрасное излучение в строго определенном диапазоне волн. Если через колбу с газом пропустить стабильный инфракрасный поток, то часть его будет газом поглощена. Более того, будет поглощена в основном только некоторая часть спектра потока, называемая абсорбционным максимумом данного газа. Чем выше концентрация газа в колбе, тем большее будет наблюдаться поглощение.

Тот факт, что разные газы обладают разными абсорбционными максимумами, позволяет измерить концентрацию газов в смеси, измеряя поглощение соответствующей длины волны. Иначе говоря, определить концентрацию каждого из газов в ОГ можно, анализируя снижение интенсивности светового потока в части спектра, соответствующей абсорбционному максимуму данного газа.

Спектрометрический блок прибора устроен следующим образом

Через измерительную кювету, представляющую собой трубку с закрытыми оптическим стеклом концами, прокачиваются предварительно отфильтрованные отработанные газы. С одной стороны трубки расположен излучатель. Он представляет собой нагреваемую электрическим током спираль, температура которой строго стабилизируется. Излучатель генерирует стабильный поток инфракрасного излучения.

С противоположной стороны трубки устанавливаются светофильтры, которые из всего потока выделяют необходимые длины волн, соответствующие абсорбционным максимумам исследуемых газов.

После прохождения светофильтров поток попадает в приемник инфракрасного излучения. Приемник измеряет интенсивность потока и вырабатывает информацию о концентрации газов в смеси.

Таким способом определяется концентрация СО, СН и СО2. В дальнейшем смесь газов из измерительной кюветы поступает последовательно в датчики электрохимического типа, вырабатывающие электрический сигнал, напряжение которого пропорционально концентрации кислорода О2 и оксидов азота NОx.

В современном приборе замер концентрации СО, СН и СО2 выполняется описанным спектрометрическим методом, а концентрации кислорода O2 и оксидов азота NOx — электрохимическими датчиками.

Обработка сигналов датчиков и спектрометрического блока в современном газоанализаторе выполняется электронной схемой, построенной на базе микропроцессора.

На дисплей прибора информация о содержании СО, CO2 и O2 выводится в процентах, а СН и NOx — в так называемых ppm (parts per million), «частей на миллион». Такое обозначение связано с крайне низкой концентрацией названных компонентов в ОГ и неудобством использования процентов для обозначения их количества. Соотношение между процентами и ppm выглядит следующим образом:

10 000 ppm = 1%

Поэтому количество, например, СН в ОГ типичного двигателя составляло бы около 0.001%-0.01%. Оперировать в работе такими цифрами сложно, в результате принято использовать именно ppm.

Газоанализатор – прибор сложный, и его качество определяется точностью и надежностью компонентов, в первую очередь спектрометрического блока.

Конструктивно и технологически спектрометрический блок настолько сложен и специфичен, что его производство на должном с точки зрения качества уровне освоено лишь несколькими фирмами во всем мире.

Производители непосредственно газоанализаторов используют уже готовые спектрометрические блоки, встраивая их в свои приборы. Такой подход себя оправдывает, и в приборе, произведенном в России, Италии или Корее можно обнаружить спектрометрический блок, сделанный в Японии или Америке.

Спектрометрический блок – дорогое устройство, составляющее заметную часть в стоимости прибора.

При эксплуатации очень важно обеспечить его долговечность. Механические частицы, сажа и влага, оседая на стенках блока, приводят к значительному дрейфу его показаний и даже к его полной неработоспособности.

Поэтому, прежде чем попасть в измерительный блок, отработанные газы проходят подготовку, которая производится, как правило, в несколько этапов:

  • грубая очистка отработанных газов. Выполняется фильтром, установленным на входе в прибор либо в ручке зонда забора пробы. Отфильтровываются крупные механические частицы и сажа.
  • отделитель влаги. Он может быть самых разнообразных конструкций. Назначение – отделить от потока газов капли влаги, конденсирующиеся на внутренних поверхностях зонда и соединительного шланга и удалить их. Удаление производится автоматически либо вручную оператором путем периодического слива конденсата из накопителя.
  • фильтр тонкой очистки. С его помощью производится окончательная фильтрация от мельчайших механических частиц. Фильтров может быть установлено несколько, последовательно друг за другом.

Что нужно знать при эксплуатации газоанализаторов

Особенность конструкции прибора накладывает отпечаток на его эксплуатацию и рекомендации по уходу за ним. Как правило, эксплуатация автомобильного газоанализатора не представляет большой сложности и выполняется одним оператором.

Перед выполнением измерений необходимо произвести коррекцию нуля прибора, для чего нажать на лицевой панели соответствующую кнопку. Часть газоанализаторов выполняют коррекцию нуля автоматически через заданный промежуток времени, в этом случае вмешательство оператора не требуется.

Для снятия показаний нужно установить зонд в выхлопную трубу автомобиля на глубину не менее 300 мм и зафиксировать его зажимом. Столь значительная глубина требуется для того, чтобы исключить подсос в зонд атмосферного воздуха и получение недостоверных показаний.

Далее необходимо запустить измерение и дождаться установившихся показаний на табло прибора. Длительность процесса установки показаний обычно составляет от 15 до 45 секунд и зависит от длины шланга и конструкции пневматического тракта, которая может значительно различаться у приборов разных производителей.

Основываясь на многолетней практике эксплуатации газоанализаторов, можно дать следующую рекомендацию.

После каждого замера следует отключить шланг с зондом от прибора и продуть его в обратную сторону сжатым воздухом с целью удаления конденсата. Чаще всего при этом наблюдается весьма значительное выделение влаги. Конечно, встроенный отделитель влаги свою функцию выполняет, но, тем не менее, следование данной рекомендации представляется как мера, повышающая вероятность безотказной работы прибора.

Обслуживание газоанализатора сводится в основном к периодической замене фильтров тонкой и грубой очистки. Рекомендации по их замене приводятся в руководстве по эксплуатации конкретного прибора.

Очень важно обратить внимание на следующий момент: фильтры тонкой очистки, применяемые в газоанализаторах, отличаются от бензиновых фильтров и использование последних в газоанализаторах недопустимо.

Также важно следить за тем, чтобы фильтры были сухими. Намокшие фильтры необходимо либо просушить подачей воздуха в направлении против нанесенной на корпус стрелки, либо заменить.

Читайте также:  Самостоятельная работа для студентов по устройству автомобилей

Анализ состава отработанных газов

Самый главный тезис, который необходимо озвучить перед изложением методики анализа состава отработанных газов, заключается в следующем.

Для грамотного и правильного анализа требуется абсолютное понимание того, откуда в составе ОГ появляется тот или иной компонент.

Нужно четко представлять течение процессов в цилиндрах и выпускном тракте двигателя, происходящие при этом химические превращения и базироваться на этом понимании.

При таком подходе диагност начинает думать и грамотно анализировать состав ОГ, видя причинно-следственные связи. Подход типа «если состав ОГ такой-то – то имеет место дефект такой-то» не представляется конструктивным и рассматриваться не будет.

Прежде всего, вспомним из школьного курса химии состав атмосферного воздуха. Это потребуется для правильного понимания происходящих в цилиндрах и в выпускном тракте двигателя процессов.

Углекислый газ (СО2)

Остальные газы, в основном инертные, присутствуют в малых количествах и в нашем случае большой роли не играют, как, впрочем, и аргон. Цифры, очень близкие к приведенным, можно увидеть на табло газоанализатора, если запустить измерение «на свежем воздухе».

Итак, в цилиндрах двигателя сгорает рабочая смесь.Реакция окисления углеводородов топлива происходит по следующей схеме:

Напомним, что состав смеси принято оценивать коэффициентом избытка воздуха λ. Он представляет собой отношение реального количества воздуха, поступившего в цилиндры, к теоретическому количеству, необходимому для полного сгорания топлива. Смеси, в которых количество воздуха совпадает с теоретически необходимым, называются стехиометрическими. В этом случае λ=1. Если количество воздуха больше необходимого, то смесь принято называть бедной, и коэффициент находится в диапазоне λ=1.0. 1.3. Более бедная смесь перестает воспламеняться. Если же воздуха меньше необходимого, то смесь называют богатой. Такая смесь характеризуется значением λ=0.8. 1.0.

Казалось бы, при сгорании стехиометрической смеси отработанные газы должны состоять из углекислого газа СО2, водяного пара Н2О и азота N2. Но на практике все происходит иначе. Под действием высокой температуры в цилиндре двигателя азот и кислород вступают в реакцию, в результате которой образуются оксиды азота. Совокупность этих оксидов обозначается NOx и отображается пятикомпонентными газоанализаторами. Образование NOx сильно увеличивается с ростом температуры газов и концентрации кислорода. Основным компонентом в смеси оксидов азота является монооксид NO. Покинув цилиндры двигателя, он окисляется в атмосфере до диоксида NО2, который гораздо более токсичен и, соединяясь в атмосфере с водяным паром, образует кислотные дожди.

Кроме того, в ОГ всегда содержатся углеводороды СН. Они представляют собой исходные или распавшиеся молекулы топлива, которые не принимали участия в сгорании, а также продукты распада моторного масла. Углеводороды появляются в ОГ вследствие гашения пламени вблизи относительно холодных стенок камеры сгорания, в защемленных объемах вроде пространства между поршнем и цилиндром над верхним компрессионным кольцом.

Часть СН выбрасывается в результате того, что на тактах впуска и сжатия горючей смеси пары топлива поглощаются масляной пленкой на стенках цилиндров. На такте рабочего хода и выпуска происходит их выделение из пленки. Аналогичный эффект поглощения паров топлива наблюдается и на нагаре, покрывающем стенки камеры сгорания.

Далее, в ОГ обязательно присутствует продукт неполного сгорания топлива — оксид углерода СО (угарный газ). Он образуется в основном во время реакции сгорания при недостатке кислорода, поэтому основное влияние на образование СО в бензиновых двигателях оказывает состав смеси: чем она богаче, тем выше концентрация СО.

Следует отметить, что данный компонент является, пожалуй, самым опасным с точки зрения воздействия на человеческий организм. Угарный газ не имеет цвета и запаха, но при вдыхании соединяется с гемоглобином крови и при высокой концентрации может вызвать смертельный исход.

Конечно же, в составе ОГ неизбежно окажется и не вступивший в реакцию кислород. Следует отметить, что кислород может оказаться в составе ОГ не из цилиндров двигателя, а из атмосферного воздуха, поступающего через места нарушения герметичности выпускного тракта.

Каталитический нейтрализатор

Многочисленные исследования показали, что улучшение процесса сгорания, оптимизация управления составом смеси и углом опережения зажигания не позволяют снизить токсичность ОГ хотя бы до уровня, обеспечивающего выполнение норм Евро II, не говоря о более высоких требованиях.

Для решения проблемы было предложено использование дополнительной обработки ОГ в выпускном тракте двигателя. Устройства, выполняющие такую обработку, называются каталитическими нейтрализаторами.

Основными частями каталитического нейтрализатора являются:

  • корпус из жаропрочной нержавеющей стали
  • блок-носитель, представляющий собой сотовую структуру из керамики или гофрированной фольги толщиной 0.1..0.5 мм
  • прослойка с пористой структурой из оксида алюминия
  • активный каталитический слой

Блок-носитель состоит из нескольких тысяч тонких каналов, сквозь которые протекают отработанные газы. Каналы керамического или металлического блока-носителя покрыты очень пористой прослойкой. Благодаря этому полезная площадь поверхности каталитического нейтрализатора увеличивается приблизительно в 7 000 раз, что обеспечивает необходимый массоперенос между ОГ и активным катализатором. На прослойку наносится каталитически активный слой.

Трехкомпонентный каталитический нейтрализатор имеет каталитически активный слой из платины (Pt), родия (Rd) и палладия (Pd). Название «трехкомпонентный каталитический нейтрализатор» говорит о том, что в одном корпусе одновременно и параллельно протекают три химические реакции превращения.

Для нормального течения этих реакций в нейтрализаторе необходимо поддерживать высокую температуру в пределах 400…800°С. При более низких температурах эффективность нейтрализатора невелика, а при температуре свыше 1000°С наступает термическое разрушение активного слоя и даже спекание сот блока-носителя.

Не вдаваясь в подробности протекающих на поверхности активного слоя химических реакций, можно привести лишь упрощенные окончательные их результаты:

  • NOx восстанавливаются до чистого азота N2 с выделением при этом свободного кислорода O2
  • СО окисляется до СO2, при этом расходуется кислород O2
  • углеводороды СН окисляются до СO2 и Н2О, при этом тоже расходуется кислород O2
Читайте также:  Как отремонтировать станцию технического обслуживания автомобилей

Отличительной особенностью трехкомпонентного каталитического нейтрализатора является то, что для его полноценной работы необходима работа двигателя на стехиометрической топливно-воздушной смеси. Объясняется это следующим. Только при λ = 1 получается состав ОГ, в котором свободного кислорода, выделившегося при восстановлении оксидов азота, достаточно для полного окисления СО и СН до СO2 и Н2О.

Этот факт настолько важен, что его следует повторить: полноценное функционирование каталитического нейтрализатора возможно только в том случае, если двигатель работает на стехиометрической смеси.

В литературе даже используется термин «окно катализации», под которым подразумевается диапазон значений λ, при которых нейтрализатор способен выполнять свою функцию. Строго говоря, этот диапазон смещен от стехиометрии в сторону богатой смеси, и находится примерно в пределах λ = 0.98..0.99. Поддержание состава смеси в заданном диапазоне возложено на систему управления двигателем, для чего в ее состав введен датчик концентрации кислорода в ОГ.

Также необходимо упомянуть о двигателях с непосредственным впрыском топлива. Такие двигатели в некоторых режимах могут работать на сверхбедных смесях, что ведет к значительному повышению доли оксидов азота NOx. Поэтому для нейтрализации NOx в выпускной тракт устанавливается еще один катализатор, так называемого накопительного типа.

Для более полного понимания работы каталитического нейтрализатора был проведен следующий эксперимент.

Был взят автомобиль ВАЗ 2112, оснащенный ЭБУ VS5.1 с прошивкой V5D07X09, поддерживающей регулировку подачи топлива с диагностического оборудования.

  1. Нейтрализатор присутствует. Были зафиксированы показания СО, CO2, O2, СН и λ при изменении регулировочного коэффициента в диапазоне от −0.250 до +0.250.
  2. Вместо нейтрализатора установлена труба-вставка, и измерения проведены повторно.

Результаты отображены на графиках. Сплошная линия соответствует замеру с нейтрализатором, прерывистая — без него.

Графики строились вручную, с небольшой интерполяцией. Следует отметить один нюанс — по какой-то причине прибор показал неверное значения CO2 при измерении с нейтрализатором. Вероятно, это произошло из-за длительной работы двигателя при низкой частоте вращения и, соответственно, снижения температуры нейтрализатора. С этой оговоркой можно обратить внимание на полученные результаты и проанализировать их:

Первое, что бросается в глаза, — значение λ в обоих случаях практически совпало.

В диапазоне богатых смесей точки вообще образовали одну линию, в диапазоне бедных смесей наблюдается расхождение на уровне погрешности измерения. И лишь на самых бедных смесях разница заметна, но, вероятно, в том диапазоне просто невозможно корректное вычисление λ.

Вывод: независимо от наличия или отсутствия нейтрализатора рассчитанное значение λ остается одним и тем же. Собственно, по-другому и не могло быть, ведь значение λ характеризует только работу двигателя, неважно, с нейтрализатором или без него.

Очень любопытно ведет себя значение СН. Без нейтрализатора наблюдается классическая зависимость. С нейтрализатором картина интереснее. Он сильно влияет в диапазоне бедной смеси. Около стехиометрии наблюдается характерная впадина, соответствующая окну катализации. Причем при небольшом обогащении смеси относительно стехиометрии происходит очень резкий скачок значения СН, и далее оно почти сравнивается со значением, полученным без нейтрализатора.

Графики содержания кислорода очень похожи. Естественно, при работе нейтрализатора кислород расходуется, и это заметно при их сравнении.

То же самое можно сказать и о графиках СО. Совершенно четко прослеживается диапазон в районе стехиометрии, где эффективность работы нейтрализатора максимальна, и графики соответственно максимально разнятся.

Графики CO2 тоже имеют академический вид. Количество CO2 в составе ОГ в случае с нейтрализатором больше. Объясняется это тем, что последний превращает в CO2 содержащиеся в ОГ углеводороды и угарный газ. При отклонении от стехиометрии как в сторону обеднения, так и в сторону обогащения смеси, количество CO2 уменьшается.

Это очень важный момент: максимальное количество CO2 в составе ОГ приблизительно соответствует стехиометрической смеси.

Расчетный коэффициент λ

Отдельного разговора заслуживает коэффициент избытка воздуха λ. Следует четко понимать, что значение λ, отображаемое на дисплее прибора, представляет собой не реальный, а расчетный коэффициент. Он вычисляется процессором газоанализатора исходя из количества различных компонентов в составе ОГ. Вычисление производится по так называемой формуле Бертшнайдера:

Формула приведена в качестве справочного материала и подробно разбираться нами не будет.

Расчетное значение λ будет соответствовать реальному значению только в случае, если выпускной тракт двигателя полностью герметичен, а измерительные элементы газоанализатора откалиброваны. В том случае, если выпускной тракт негерметичен (имеются подсосы атмосферного воздуха), то расчетное значение λ может оказаться не только неверным, но и превышающем все разумные пределы. Объясняется это тем, что в формуле Бертшнайдера используется содержание кислорода в ОГ, и любое появление лишнего кислорода приводит к значительной погрешности вычисления этого коэффициента.

Состав ОГ исправного двигателя

Учитывая все вышесказанное, необходимо озвучить состав отработанных газов исправного двигателя. Следует заранее оговориться, что в дальнейшем речь пойдет о работе с четырехкомпонентным прибором, так как пятикомпонентные, отображающие помимо прочего количество NOx, на участках диагностики практически не применяются из-за высокой цены. Цифры, которые будут приведены ниже, получены из многолетнего опыта применения газоанализаторов.

Прежде чем назвать их, заострим внимание на следующем моменте.

Подавляющее большинство современных бензиновых двигателей оснащено каталитическим нейтрализатором отработанных газов. Поэтому составы ОГ такого двигателя и двигателя, не оснащенного нейтрализатором, будут значительно отличаться. Исходя из этого соображения, представляется наиболее правильным рассматривать состав ОГ в выпускном тракте до нейтрализатора и после него. Эти цифры – эталон, от которого делаются все последующие выводы, можно сказать, это основа газоанализа. Их нужно запомнить и постоянно держать в голове. Итак,

— состав ОГ исправного, прогретого до рабочей температуры, работающего на стехиометрической смеси двигателя в выпускном тракте до каталитического нейтрализатора выглядит следующим образом: (табл.1)

Adblock
detector