Физика трение колеса автомобиля
2017-12-15
Как направлена сила трения, действующая на ведущие колеса автомобиля, при разгоне (а), торможении (б), повороте (в)? Равна ли эта сила своему максимальному значению $\mu N$ ($\mu$ — коэффициент трения, $N$ — сила реакции полотна дороги), и если да, то в каких ситуациях? А в каких ситуациях нет? Хорошо это, или плохо, если сила трения достигает своего максимального значения? Почему? Какой автомобиль может развивать на дороге большую мощность — передне- или заднеприводный — при одинаковой мощности мотора и почему? Считать, что масса автомобиля распределена равномерно, и его центр тяжести находится посередине.
Обсудим сначала вопрос о роли силы трения в движении машины. Представим себе, что водитель машины, стоящей на гладком-гладком льду (сила трения между колесами и льдом отсутствует), нажимает на педаль газа. Что будет происходить? Ясно, что машина ехать не будет: колеса будут вращаться, но будут пробуксовывать относительно льда — ведь трения-то нет. Причем это будет происходить независимо от мощности двигателя. А это значит, что для того, чтобы мощность двигателя использовать, нужно трение — без него машина не поедет.
Что же происходит, когда сила трения есть. Пусть сначала она очень маленькая, а водитель стоящей машины снова нажимает на педаль газа? Колеса (речь сейчас идет о ведущих колесах автомобиля, допустим это передние колеса) проскальзывают относительно поверхности (трение — маленькое), вращаясь так, как показано на рисунке, но при этом возникает сила трения, действующая со стороны дороги на колеса, направленная вперед по ходу движения машины. Она и толкает машину вперед.
Если сила трения большая, то при плавном нажатии на педаль газа колеса начинают вращаться, и как бы отталкиваются от шероховатостей дороги, используя силу трения, которая направлена вперед. При этом колеса не проскальзывают, а катятся по дороге, так, что нижняя точка колеса не перемещается относительно полотна. Иногда и при большом трении колеса пробуксовывают. Наверняка, вы сталкивались с ситуацией, когда какой-нибудь «сумасшедший водитель» так трогается при включении зеленого сигнала светофора, что колеса «визжат», а на дороге остается черный след из-за скольжения резины по асфальту. Итак, в экстренной ситуации (при резком торможении или трогании с побуксовкой) колеса скользят относительно дороги, в обычных случаях (когда на дороге не остается черного следа от стирающихся покрышек) колесо не скользит, а только катится по дороге.
Итак, если машина едет равномерно, то колеса не скользят по дороге, а катятся по ней так, что нижняя точка колеса покоится (а не проскальзывает) относительно дороги. Как в этом случае направлена сила трения? Сказать, что противоположно скорости машины — неверно, ведь говоря так про силу трения, подразумевают случай скольжения тела относительно поверхности, а сейчас у нас скольжения колес относительно дороги нет. Сила трения в этом случае может быть направлена как угодно, и мы сами определяем ее направление. И вот как это происходит.
Представим себе, что нет никаких препятствующих движению машины факторов. Тогда машина движется по инерции, колеса вращаются по инерции, причем угловая скорость вращения колес связана со скоростью движения машины. Установим эту связь. Пусть колесо движется со скоростью $v$ и вращается так, что нижняя точка колеса не проскальзывает относительно дороги. Перейдем в систему отсчета, связанную с центром колеса. В ней колесо как целое не движется, а только вращается, а земля движется назад со скоростью $v$. Но поскольку колесо не проскальзывает относительно земли, то его нижняя точка имеет такую же скорость как земля. А значит, и все точки поверхности колеса вращаются относительно центра со скоростью $v$ и, следовательно, имеют угловую скорость $\omega = v / R$, где R — радиус колеса. Переходя теперь назад в систему отсчета, связанную с землей, заключаем, что при отсутствии проскальзывания между нижней точкой колеса и дорогой угловая скорость колеса $\omega = v / R$, а все точки поверхности имеют разные скорости относительно земли: например, нижняя точка — нулевую, верхняя $2v$ и т. д.
А пусть водитель при таком движении машины нажимает на педаль газа. Он заставляет колесо вращаться быстрее, чем нужно при данной скорости машины. Колесо стремится проскользнуть назад, возникает сила трения, направленная вперед, которая и разгоняет машину (машина как бы отталкивается от шероховатостей дороги, используя силу трения). Если водитель нажимает на педаль тормоза, колесо стремится вращаться медленнее, чем нужно при данной скорости машины. Возникает сила трения, направленная назад, которая тормозит машину. Если водитель поворачивает колеса машины, возникает сила трения, направленная в сторону поворота, которая машину поворачивает. Таким образом, управление машиной — разгоном, торможением, поворотом — основано на правильном использовании силы трения, причем, конечно, подавляющее большинство водителей об этом даже не догадываются.
Ответим теперь на вопрос: равна ли эта сила своему максимальному значению? Вообще говоря, нет, поскольку нет скольжения колеса относительно дороги, а сила трения равна максимальному значению при скольжении. В покое сила трения может принимать любые значения от нуля до максимального $\mu N$, где $\mu$ — коэффициент трения; $N$ — сила реакции опоры. Поэтому если мы разгоняемся (сила трения направлена вперед), но хотим увеличить темп разгона, мы сильнее нажимаем на педаль газа, и увеличиваем силу трения. Аналогично, если мы тормозим (сила трения направлена назад), но хотим увеличить степень торможения, мы сильнее нажимаем на тормоз и увеличиваем силу трения. Но ясно, что ее можно увеличить и в том и в другом случае, если она не была максимальной! Таким образом, для управления машиной сила трения не должна равняться максимальному значению, и эту разность мы используем для совершения тех или иных маневров. И любой водитель (даже если он ничего не знает про силу трения, а таких, конечно, подавляющее большинство) интуитивно чувствует, есть ли у него резерв силы трения, «далеко» ли машина от пробуксовки, и есть ли возможность ей управлять.
Тем не менее, есть одна ситуация, когда сила трения равна своему максимальному значению. Эта ситуация называется заносом. Пусть водитель резко затормозил на скользкой дороге. Машина начинает скользить по дороге, это состояние движения и называется заносом. В этом случае сила трения направлена противоположно скорости (назад) и равна своему максимальному значению. Это ситуация очень опасна, ведь машина АБСОЛЮТНО неуправляема. Мы не можем повернуть (хоть как-то, хоть чуть-чуть), ведь для поворота нам нужна сила трения, направленная в сторону поворота, а в нашем распоряжении ее нет — сила трения максимальна и направлена назад. Мы не можем увеличить скорость торможения (невозможно увеличить силу трения — она и так максимальна), не можем (даже если бы мы захотели этого в такой ситуации) ускориться. Мы не можем ничего! Ситуация осложняется еще и тем, что в состоянии заноса машину никто не «держит» на дороге. Почему машина в обычных условиях не съезжает в кювет, ведь полотно дороги всегда делается покатым к обочинам, чтобы стекала вода? Ее держит сила трения, а вот если машина скользит (занос) сила трения направлена противоположно скорости и никак иначе. Поэтому любое «боковое» возмущение — покатость дороги, небольшой камень под одним из колес — могут развернуть или сбросить машину на обочину. Никогда не допускайте заноса1.
Теперь сравним мощность, которую могут развивать на дороге передне- и заднеприводной автомобили с одинаковым мотором. Очевидно, что мощность, которую может развивать автомобиль на дороге, зависит не только от его двигателя, но и от того, как автомобиль «использует» силу трения. Действительно, в отсутствие силы трения автомобиль стоял бы на месте (с вращающимися колесами) независимо от мощности двигателя (вращающего эти колеса). Докажем, что заднеприводные автомобили мощнее переднеприводных при одинаковой мощности мотора и оценим отношение мощностей, которые может развивать двигатель, разгоняя машину на дороге (при условии, что мощность самого двигателя может быть очень большой).
Разгоняет автомобиль сила трения, действующая на ведущие колеса, а она не может превышать значения $\mu N$ ($N$ — сила реакции). Поэтому чем больше сила реакции, тем больших значений может достигнуть разгоняющая сила трения (а нажатие на педаль газа в ситуации, когда сила трения достигла максимума, приведет только к проскальзыванию и к заносу, но не к увеличению мощности, которую развивает двигатель). Найдем силы реакции для задних и передних колес машины. Силы, действующие на машину при разгоне, показаны на рисунках (на правом — для заднеприводной, на левом — для переднеприводной). На машину действуют: сила тяжести, силы реакции и сила трения. Поскольку машина движется поступательно, сумма моментов всех сил относительно ее центра тяжести равна нулю. Поэтому, если центр тяжести машины находится точно посередине машины, расстояние между задними и передними колесами $l$, а высота центра тяжести над дорогой $h$, условие равенства нулю суммы моментов относительно центра тяжести дает (при условии, что машина движется, развивая максимальную мощность на максимуме силы трения):
$N_ <1>\frac
$N_ <1>\frac
где $\mu$ — коэффициент трения. Учитывая, что и в том и в другом случае $N_ <1>+ N_ <2>= mg$, из (1) найдем силу реакции для передних колес в случае переднеприводного автомобиля
и из (2) силу реакции задних колес в случае заднего привода
(здесь (пп) и (зп) — передний и задний привод). Отсюда находим отношение сил трения, разгоняющих передне- и заднеприводную машину, и, следовательно, отношение мощностей, которые может развивать на дороге их двигатель
Для значений $l = 3 м, h = 0,5 м$ и $\mu = 0,5$ имеем из (5)
Сила трения качения: описание, формула
Трение — физическое явление, с которым человек борется с целью его уменьшения в любых вращающихся и скользящих частях механизмов, без которого, однако, невозможно движение ни одного из этих механизмов. В данной статье рассмотрим с точки зрения физики, что такое сила трения качения.
Какие виды сил трения существуют в природе?
В первую очередь рассмотрим, какое место трение качения занимает среди других сил трения. Эти силы возникают в результате контакта двух разных тел. Это могут быть тела твердые, жидкие или газообразные. Например, полет самолета в тропосфере сопровождается наличием трения между его корпусом и молекулами воздуха.
Рассматривая исключительно твердые тела, выделяют силы трения покоя, скольжения и качения. Каждый из нас замечал: чтобы сдвинуть с места коробок, находящийся на полу, необходимо вдоль поверхности пола приложить некоторую силу. Значение силы, которое выведет коробок из состояния покоя, будет по модулю равно силе трения покоя. Последняя действует между дном коробка и поверхностью пола.
Как только коробок начал свое движение, необходимо прилагать постоянную силу, чтобы сохранять это движение равномерным. Связан этот факт с тем, что между контактом пола и коробком на последний действует сила трения скольжения. Как правило, она на несколько десятков процентов меньше, чем трение покоя.
Если под коробок положить круглые цилиндры из твердого материала, то перемещать его станет гораздо легче. На вращающиеся в процессе движения цилиндры под коробком будет действовать сила трения качения. Она обычно намного меньше предыдущих двух сил. Именно поэтому изобретение человечеством колеса стало огромным скачком в сторону прогресса, ведь люди получили возможность перемещать гораздо большие грузы с помощью небольшой приложенной силы.
Физическая природа трения качения
Почему возникает сила трения качения? Этот вопрос является непростым. Для ответа на него следует детально рассмотреть, что происходит с колесом и поверхностью в процессе качения. В первую очередь они не являются идеально гладкими — ни поверхность колеса, ни поверхность, по которой оно катится. Тем не менее это не основная причина появления трения. Главной же причиной является деформация одного или обоих тел.
Любые тела, из какого бы твердого материала они ни состояли, деформируются. Чем больше вес тела, тем большее давление оно оказывает на поверхность, а значит, деформируется само в точке контакта и деформирует поверхность. Эта деформация в ряде случаев настолько мала, что не превышает предела упругости.
В процессе качения колеса деформированные участки после прекращения контакта с поверхностью восстанавливают исходную форму. Тем не менее эти деформации циклически повторяются с новым оборотом колеса. Любая циклическая деформация, даже если она лежит в пределе упругости, сопровождается гистерезисом. Иными словами, на микроскопическом уровне форма тела до и после деформации отличается. Гистерезис циклов деформации в процессе качения колеса приводит к «распылению» энергии, что проявляется на практике в виде появления силы трения качения.
Качение идеального тела
Под идеальным телом в данном случае имеется в виду то, что оно является недеформируемым. В случае идеального колеса площадь его контакта с поверхностью равна нулю (оно касается поверхности вдоль линии).
Охарактеризуем силы, которые действуют на недеформируемое колесо. Во-первых, это две вертикальные силы: вес тела P и сила реакции опоры N. Обе силы проходят через центр масс (ось колеса), поэтому в создании крутящего момента не принимают участия. Для них можно записать:
Во-вторых, это две горизонтальные силы: внешняя сила F, которая толкает колесо вперед (она проходит через центр масс), и сила трения качения fr. Последняя создает крутящий момент M. Для них можно записать такие равенства:
Здесь r — радиус колеса. Эти равенства содержат очень важный вывод. Если сила трения fr будет бесконечно малой, то она все равно создаст крутящий момент, который приведет к движению колеса. Поскольку внешняя сила F равна величине fr, то любое бесконечно малое значение F приведет к качению колеса. Это означает, что если тело качения является идеальным и не испытывает деформации в процессе движения, то ни о какой силе трения качения говорить не приходится.
Все существующие тела являются реальными, то есть испытывают деформацию.
Качение реального тела
Теперь рассмотрим описанную выше ситуацию только для случая реальных (деформируемых) тел. Площадь касания колеса и поверхности уже не будет равна нулю, она будет иметь некоторое конечное значение.
Проведем анализ сил. Начнем с действия вертикальных сил, то есть веса и реакции опоры. Они по-прежнему равны друг другу, то есть:
Однако сила N теперь действует вертикально вверх не через ось колеса, а несколько смещена от нее на расстояние d. Если представить площадь соприкосновения колеса с поверхностью в виде площади прямоугольника, то длиной этого прямоугольника будет толщина колеса, а ширина будет равна 2*d.
Теперь перейдем к рассмотрению горизонтальных сил. Внешняя сила F по-прежнему не создает момента вращения и равна силе трения fr по абсолютной величине, то есть:
Момент сил, приводящий к вращению, будет создавать трение fr и реакцию опоры N. Причем эти моменты будут направлены в разные стороны. Соответствующее выражение имеет вид:
В случае равномерного движения момент M будет равен нулю, поэтому получаем:
Последнее равенство с учетом записанных выше формул можно переписать так:
По сути, мы получили главную для понимания силы трения качения формулу. Далее в статье проведем ее анализ.
Коэффициент сопротивления качению
Этот коэффициент уже был введен выше. Также было дано геометрическое его объяснение. Речь идет о величине d. Очевидно, что чем больше эта величина, тем больший момент создает сила реакции опоры, который препятствует движению колеса.
Коэффициент сопротивления качению d, в отличие от коэффициентов трения покоя и скольжения, — величина размерная. Измеряется он в единицах длины. В таблицах его приводят обычно в миллиметрах. Например, для колес поезда, катящихся по стальным рельсам, d = 0,5 мм. Величина d зависит от твердости двух материалов, от нагрузки на колесо, от температуры и некоторых других факторов.
Коэффициент трения качения
Не нужно его путать с предыдущим коэффициентом d. Коэффициент трения качения обозначают символом Cr и вычисляют по следующей формуле:
Это равенство означает, что величина Cr является безразмерной. Именно она приводится в ряде таблиц, содержащих информацию о рассматриваемом виде трения. Этот коэффициент удобно использовать для практических расчетов, поскольку он не предполагает знания радиуса колеса.
Величина Cr в подавляющем большинстве случаев меньше, чем коэффициенты трения и покоя. Например, для автомобильных шин, движущихся по асфальту, величина Cr находится в пределах нескольких сотых (0,01 — 0,06). Однако она значительно возрастает при движении спущенных колес по траве и по песку (≈0,4).
Анализ полученной формулы для силы fr
Запишем еще раз полученную выше формулу силы трения качения:
Из равенства следует, что чем больше диаметр колеса, тем меньшую силу F следует приложить, чтобы оно начало движение. Теперь запишем это равенство через коэффициент Cr, имеем:
Как видно, сила трения прямо пропорциональна весу тела. Кроме того, при значительном увеличении веса P изменяется сам коэффициент Cr (он возрастает в виду увеличения d). В большинстве практических случаев Cr лежит в пределах нескольких сотых. В свою очередь, значение коэффициента трения скольжения лежит в пределах нескольких десятых. Поскольку для сил трения качения и скольжения формулы одинаковые, то качение оказывается выгодным с энергетической точки зрения (сила fr меньше на порядок силы скольжения в большинстве практических ситуаций).
Условие качения
Многие из нас встречались с проблемой проскальзывания колес автомобиля при движении по льду или по грязи. Почему это происходит? Ключ к ответу на этот вопрос лежит в соотношении абсолютных значений сил трения качения и покоя. Еще раз выпишем формулу для качения:
Когда сила F будет больше или равна трению качения, тогда колесо начнет катиться. Однако если эта сила раньше превзойдет величину трения покоя, то раньше наступит проскальзывание колеса, чем его качение.
Таким образом, эффект проскальзывания определяется соотношением коэффициентов трения покоя и трения качения.
Способы противодействия проскальзыванию колеса автомобиля
Трение качения колеса автомобиля, находящегося на скользкой поверхности (например, на льду) характеризуется коэффициентом Cr = 0,01-0,06. Однако значения такого же порядка характерны для коэффициента трения покоя.
Чтобы избежать риска проскальзывания колеса, используют специальную «зимнюю» резину, в которую вкручены металлические шипы. Последние, врезаясь в ледяную поверхность, увеличивают коэффициент трения покоя.
Другой способ увеличение трения покоя заключается в модификации поверхности, по которой движется колесо. Например, с помощью посыпания ее песком или солью.