Меню

Двигатели постоянного тока последовательного возбуждения имеют следующие особенности

Характеристики двигателей последовательного возбуждения

В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство Iв=Ia=I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f(Ia). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1 — Схема электродвигателя последовательного возбуждения

Скоростная характеристика представляет зависимость n=f(Ia) при U=Uн. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между Ia и Ф. Приняв допущение Ф=кIa, запишем аналитическую зависимость скоростной характеристики в виде

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока Ia магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины ?r.

Рис. 2 — Скоростные характеристики двигателя последовательного возбуждения

Таким образом, скорость сериесного двигателя резко изменяется с изменением нагрузки и такая характеристика называется «мягкой».

При малых нагрузках (до 0,25 Iн) скорость двигателя после­довательного возбуждения может возрасти до опасных пределов (двигатель идет «вразнос»), поэтому работа таких двигателей на холостом ходу не допускается.

Моментная характеристика — это зависимость M=f(Ia) при U=Uн. Если предположить, что магнитная цепь не насыщена, то Ф=кIa и, следовательно , имеем

Это уравнение квадратичной параболы.

Кривая моментной характе­ристики изображена на рисунке 3.8. По мере увеличения тока Ia магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная характеристика двигателя последовательного возбуждения

Таким образом, электродвигатель последовательного возбуждения развивает момент, пропорциональный Ia 2 , что и определяет главное его преимущество. Так как при пуске Ia=(1,5..2)Iн, то двигатель последовательного возбуждения развивает значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения, поэтому он широко используется в условиях тяжелых пусков и при возможных перегрузках.

Механическая характеристика представляет собой зависимость n=f(M) при U=Uн. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря Ia. Тогда можно записать

Решая совместно уравнения , получаем

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения

Характеристика КПД двигателя последовательного возбуждения имеет обычный для электродвигателей вид (рис. 2 ).

Двигатели постоянного тока последовательного возбуждения имеют следующие особенности

Двигатель постоянного тока последовательного возбуждения представляет собой электрическую машину постоянного тока, в которой обмотка возбуждения подключена последовательно с обмоткой якоря. Для данного типа двигателей справедливо равенство: ток, протекающий в якорной обмотке, равен току в обмотке возбуждения I=I в =I я , что является его главной отличительной особенностью от остальных типов двигателей .

Читайте также:  Тест драйв уаз патриот пикап наши тесты

Рисунок 1 – Схема подключения ДПТ ПВ

Стоит обратить внимание на зависимость магнитного потока от нагрузки Ф=f(Iя). Если двигатель будет работать на 25% своей номинальной мощности или меньше, то магнитный поток будет крайне мал, что приведет к постоянному увеличению скорости вала. Препятствовать разгону будут лишь механические потери, и двигатель пойдет в «разнос» . Это приведет к быстрому выходу машины из строя. Все описанное в соответствии с формулой:

Исходя из вышесказанного, ДПТ ПВ нельзя использовать на холостом ходу , постоянно требуется контроль тока якоря. С этой целью последовательно с обмоткой возбуждения устанавливают минимальное токовое реле, которое замыкает якорную цепь только в том случае, если нагрузка на валу достаточна для поддержания номинальной работы двигателя.

Пуск двигателя производят с пусковым сопротивлением, также включенным последовательно в цепь якоря. После пуска это сопротивление выводят, и машина продолжает работать в номинальном режиме на своей естественной характеристике.

Механическая и электромеханическая характеристики ДПТ ПВ одинаковы и имеют гиперболический вид (рисунок 2).

Рисунок 2 – Механическая и электромеханическая характеристики ДПТ ПВ

Скорость вращения ротора двигателя постоянного тока с последовательным возбуждением производится регулированием двух параметров:

— питающее напряжение;
— магнитный поток полюсов двигателя.

Для изменения скорости при помощи входного напряжения, в роторную цепь вводят специальное добавочное сопротивление, или же можно использовать пусковой реостат и для этой цели. Но следует заметить, данный способ является крайне неэкономичным и нецелесообразным, так как большое количество энергии будет рассеиваться на реостате.

Регулировка скорости изменением магнитного потока, осуществляется включением реостата параллельно обмотке возбуждения. Изменяя сопротивление – меняем ток, протекающий через обмотку возбуждения. Иногда обмотку возбуждения разбивают на несколько параллельных секций. В некоторых типах двигателей предусмотрена возможность отключения витков обмотки, так добиваются того же эффекта регулирования.

Тормозные режимы

В данном двигателе отсутствует режим генераторного торможения с отдачей энергии в сеть. На рисунке 2 вы можете видеть, что ветка гиперболы естественной характеристики не пересекает ось ординат (отрицательная скорость отсутствует).

Торможение противовключением получают путем переключения выводов якорной обмотки.

ДПТ ПВ нельзя соединять с механизмом при помощи ременной передачи, так как соскакивание или разрыв ремня приведет к разгрузке двигателя, что вызовет мгновенное повышение числа оборотов и последующему выходу из строя.

Читайте также:  Справочник по ремонту грузового автомобиля

ДПТ ПВ нашли свое основное применение в качестве тяговых двигателей подвижного состава электровозов общего назначения, электровозов метрополитена и в трамваях.

ДПТ последовательного возбуждения

В этом двигателе обмотка возбуждения включена последова­тельно в цепь якоря (рис. 29.9, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Ia = Iв. При небольших нагрузках магнитная система машины не насыщена и зависимость магнитно­го потока от тока нагрузки прямо пропорциональна, т. е. Ф = kф Ia (kф — коэффициент пропорциональности). В этом случае найдем электромагнитный момент:

Формула частоты вращения примет вид

На рис. 29.9, б представлены рабочие характеристики M = F(I) и n= (I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки практически не изменяется и характеристики двигате­ля приобретают почти прямолинейный характер. Характери­стика частоты вращения двигателя последовательного возбуж­дения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой.

Рис. 29.9. Двигатель последовательного возбуждения:

а — принципиальная схема; б — рабочие характеристики; в — механические характеристики; 1 — естественная характеристика; 2 — искусственная характе­ристика

При уменьшении нагрузки двигателя последовательного воз­буждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для дви­гателя значений («разнос»). Поэтому работа двигателя последова­тельного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.

Для более надежной работы вал двигателя последовательного возбуждения должен быть жестко соединен с рабочим механиз­мом посредством муфты и зубчатой передачи. Применение ремен­ной передачи недопустимо, так как при обрыве или сбросе ремня может произойти «разнос» двигателя. Учитывая возможность ра­боты двигателя на повышенных частотах вращения, двигатели по­следовательного возбуждения, согласно ГОСТу, подвергают ис­пытанию в течение 2 мин на превышение частоты вращения на 20% сверх максимальной, указанной на заводском щите, но не меньше чем на 50% сверх номинальной.

Механические характеристики двигателя последовательного возбуждения n=f(M) представлены на рис. 29.9, в. Резко падающие кривые механических характеристик (естественная 1 и искус­ственная 2) обеспечивают двигателю последовательного возбуж­дения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значе­ние, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент. Эта особенность двигателей последовательного возбуждения является одной из причин их широкого применения в качестве тяговых двигателей на транспорте, а также в качестве крановых двигателей в подъем­ных установках, т. е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двига­теля с малой частотой вращения.

Читайте также:  Двигатель d6d руководство по ремонту

Номинальное изменение частоты вращения двигателя после­довательного возбуждения

где n[0,25] — частота вращения при нагрузке двигателя, составляю­щей 25% от номинальной.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг (рис. 29.10, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в Rрг . Кроме того, реостат Rрг , рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 29.10, б). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух дви­гателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей воз­можно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.

Изменение подводимого к двигателю напряжения возможно при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 29.6, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 29.11).

Рис. 29.11. Механические характеристики двигателя последовательного возбуждения при изменении подводимого напряжения

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом rрг, секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом rш. Включение реостата rрг, шунтирующего обмотку возбуждения (рис. 29.10, в), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения Iв = Ia — Iрг, а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 29.10, а), применяется чаще и оценива­ется коэффициентом регули­рования

Обычно сопротивление рео­стата rрг принимается таким, чтобы kрг >= 50%.

При секционировании об­мотки возбуждения (рис. 29.10, г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том rш (см. рис. 29.10, в) увели­чивается ток возбуждения Iв = Ia+Iрг, что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

Рис. 29.10. Регулирование частоты вращения двигателей последователь­ного возбуждения.

Adblock
detector