Меню

Двигатели для сборки роботов

Двигатель (привод, мотор) является неотъемлемой частью робота, который приводит в движение не только робота, но и различные механизмы или манипуляторы, которыми оснащен робот. Одним словом мотор для робота преобразует электрическую энергию в энергию движения.

В робототехнике в основном используются три типа двигателей: двигатели постоянного тока, шаговые двигатели, сервоприводы и типа RC (с радиоуправлением).

Каких размеров, какой мощности двигатель нужно использовать?

Какой тип двигателя больше подходит для того или иного робота? Все зависит от выбранной конструкции робота. Для робота с перемещением на колесах можно выбрать несколько разновидностей конструкции:

  • два ведущих колеса подключены к одному двигателю и другие два колеса поворачивают. Одним словом робот выглядит как автомобиль;
  • два ведущих колеса подключены к одному двигателю и одно колесо в качестве рулевого;
  • два колеса подключены к двум разным двигателям и еще два колеса в качестве балансирующих (наиболее распространенный вариант), получается танк на колесах.

Если классифицировать мощность двигателя, то получим следующее:

  • двигатели постоянного тока с редуктором. Самый мощный двигатель, можно использовать практически в любом типе робота;
  • серво-двигатели. Используется в роботах с весом менее 2,5 кг. и в типах роботов с ногами;
  • шаговые двигатели. Пожалуй самые слабые, используются в небольших и легких роботах.

Давайте посмотрим, на положительные и отрицательные стороны каждого из двигателей.

Электродвигатели постоянного тока

Преимущества:
— Легко доступны на рынке
— Широкий спектр двигателей
— Самые мощные
— Легко подключить
— Не обязательно использовать для больших роботов

Недостатки:
— Слишком быстрые, необходим редуктор
— Большое потребление
— Трудно установить колеса
— Дороже

Лучше всего подходит для:
— Больших роботов

Серво-двигатели:

Преимущества:
— Встроенный редуктор
— Разнообразие
— Не такие дорогие
— Подходящая мощность для маленьких роботов
— Простота установки
— Среднее потребление энергии

Недостатки:
— Не подходят для больших роботов
— Довольно низкая скорость

Лучше всего подходит для:
— Небольших роботов
— Роботов с ногами

Шаговые двигатели:

Преимущества шаговых двигателей:
— Точный контроль
— Разнообразие
— Хорошая скорость
— Не дорогие

Недостатки:
— Тяжелые в сравнении с развиваемой мощностью
— Большое потребление
— Объемные
— Трудно установить колеса
— Не слишком мощные
— Сложное управление

Лучше всего подходит для:
— Роботов следящими за линией
— Роботов решающими лабиринты

Если мы хотим что бы робот начал движение, мы должны подать на двигатель электрическое напряжение, через различные драйверы управления двигателями.

Робот на Ардуино и машинка на Bluetooth своими руками

Робот – машинка на Ардуино становятся одним из самым популярных инженерных проектов в школьной робототехнике. Именно с таких устройств, автономных или управляемых со смартфона и bluetooth, начинается путь в робототехнику “после Lego”. К счастью, сегодня можно без труда купить все необходимые компоненты и достаточно быстро создать своего первого робота для езды по линии или объезда препятствий. В этой статье вы найдете подробную видео инструкцию как сделать продвинутый автомобиль Arduino Car своими руками, с питанием, датчиками линии, расстояния и управлении через bluetooth.

Робот на ардуино своими руками

В отличие от других проектов, создание робота – автомобиля (Arduino Car) требует понимания и навыков работы сразу с несколькими важными компонентами, поэтому не стоит приступать к созданию машинок без получения базовых навыков работы с платформой Arduino. В любом случае, вам нужно будет но только подключить готовые модули, но и собрать конструкцию, шасси с двигателями, обеспечить правильное питание и управление. Все это потребует определенного терпения.

Робот машина на Ардуино

Вот список ключевых компонентов, которые обязательно встретятся в проекте.

Контроллер Ардуино

Куда уж без него, если мы говорим о проектах на этой платформе. Как правило, роботы машины делают на базе плат Arduino Uno и Nano. Mega будут слишком большие, Pro Mini сложнее подключать к компьютеру и соединять с остальными компонентами, а Leonardo требуют дополнительных навыков в программировании, они дороже и их основное преимущество (тесная интеграция с компьютером в качестве периферийного устройства) в данном случае не слишком востребована.

Есть еще вариант использования плат ESP8266 или ESP32, тогда в проекте появляется возможность управления машиной через WiFi. Но и сами платы и их программирование требует определенных навыков, в этой статье мы будем говорить преимущественно об Uno или Nano.

Конструкция, шасси и двигатели робота на Ардуино

Для того, чтобы что-то поехало или стало перемещаться, надо снабдить “это” колесами, гусеницами или манипуляторами-ногами. Вот тут выбор совершенно не ограничен, можно использовать совершенно любые комбинации и сочетания платформ. Как правило, в качестве начального варианта берутся уже готовые наборы платформ с Алиэкспресс.

Двигатель, шасси и колеса машинки на ардуино

Если работать со стандартными наборами вам не интересно, можно создать платформу своими руками. Например, разобрать игрушечные радиоуправляемые машинки или любые двигатели на 5-12 вольт, с редукторами или без. Колеса можно создать и самим, что тоже является интересной задачей.

Читайте также:  Тест драйв нового лексуса 460

Драйвер двигателей

Ардуино – достаточно ранимое устройство, не терпящее больших нагрузок по току. Соединяя его с “брутальными” мощными двигателями, не избежать беды. Поэтому для нормальной совместной работы нам нужно будет включить в схему робота компонент, отвечающий за управление двигателями – подающий и отключающий ток на их обмотки. Речь идет о микросхеме или готовом модуле, которые называют драйвером двигателя. На нашем сайте есть статьи, посвященные драйверам, построенным на схеме H-моста. Если вы покупаете готовые шасси, то обязательно предусмотрите возможность размещения на них подходящего драйвера.

Красивый корпус

Как правило, вся конструкция автомобиля строится вокруг его шасси. Если посмотреть примеры готовых проектов, то они часто выглядят как “провода на колесиках” – внешний вид их изобилует пучками соединительных проводов, ведущих от восседающего на троне контроллера Ардуино к драйверам, моторам и датчикам. Между тем, красивый и функциональный корпус не только вызывает правильные эстетические чувства и помогает выделить вашу модель от остальных. Хороший корпус может превратить игрушку в реальное устройство, помогает привить навыки конструирования и промышленного дизайна, что важно для инженеров любого возраста.

Питание робота

Обеспечение правильной схемы питания – это то, что очень часто оказывается на последнем месте в списке приоритетов начинающих ардуинщиков. Между тем, именно ошибки в схеме электропитания становятся основными причинами проблем, возникающих в процессе работы умных устройств на Ардуино. Создавая ардуино-машинку нужно предусмотреть питание контроллера, двигателей, драйвера и датчиков. У всех них есть свои ограничения и особенности работы, требуется создать оптимальное по весу и сложности решение, позволяющее учесть все эти ограничения.

Питание робота на Ардуино

Создавая по-настоящему автономное устройство робота, нужно побеспокоиться и о времени его работы, и о возможности быстрой подзарядки или смены батареек. Как правило, выбираются решения из следующих вариантов:

  • Обычные батарейки AA. Тут нужно понимать, что платы Arduino Uno, Nano и большинство двигателей, используемых в Ардуино-робототехнике, требуют напряжения в диапазоне 6-9 вольт. Поэтому придется собрать вместе последовательно не менее 4 батареек на 1,5 В, причем сами батарейки должны быть хорошего качества и обеспечивать работу с достаточно большим током. Например, большинство солевых батареек этим критериям не удовлетворяют. Батарейки AAA при создании ардуино-машинок практически не используются из-за своей пониженной емкости (хотя могут использоваться в миниатюрных моделях, где размер имеет первостепенное значение).
  • Аккумулятор AA. Здесь возникает еще большее ограничение по напряжению и току. Большинство аккумуляторов выдают напряжение 1,2 вольт, поэтому их требуется больше для “собирания” нужных нам 6-9 вольт. Несомненным плюсом является возможность перезарядки.
  • Литиевые аккумуляторы 18650. Это уже “серьезная артиллерия”, позволяющая получить большое время автономной работы, возможность подзарядки и приемлемые характеристики по току и напряжению. Рабочее напряжение для таких элементов питания – 3,7 В, что позволяет собирать готовую схему питания всего из двух элементов.
  • Другие источники питания. Сюда можно включить как более мощные и габаритные никель-металлгидридные, кадмиевые аккумуляторы, так и многочисленные литий-ионные “плоские” варианты, используемые в дронах, смартфонах или другой портативной цифровой технике.

Каким бы ни был источник питания, нужно обеспечить его надежное крепление, удобное расположение, защиту от воздействия недружелюбной окружающей среды. Если вы подключаете к одному источнику и контролер, и двигатели, и датчики, то нужно позаботиться о правильной схеме, включающей, например, надежную связь “по земле” всех устройств.

Где купить платформу и запчасти

Все, о чем говорится в этой статье, можно без проблем купить на всем известном сайте. К сожалению, подавляющее большинство предложений основываются на стандартной платформе 4WD автомобиля с двумя несущими планками, не очень надежными двигателями и колесами, любящими ездить в “развалочку”. Но эти варианты относительно не дороги и вполне подойдут для начала работы.

Шаг 3. Какие моторы используются для робота.

Моторы для робота

Двигатели для робота входят в состав приводов. Мы узнали о робототехнике в целом на шаге первом. На втором шаге решили, какого робота мы будем делать. Нам нужно установить приводы, которые заставят робота двигаться.

Выбор двигателя для робота напрямую зависит от задач, которые должен выполнять робот. Двигатель (мотор) может входить в состав привода или отдельно быть приводом.

Что такое привод?

Привод может быть определен как устройство, которое преобразует энергию (в робототехнике это, как правило, электрическая энергия) в физические движения.

Подавляющее большинство приводов производят либо вращательное или линейное движение. Например, мотор — это тип привода. Правильный выбор приводов для вашего робота требует понимание того, что приводы доступны. Возможно, немного фантазии, и немного математики и физики.
Приводы вращения — это тип приводов преобразования электрической энергии во вращательное движение.

Двигатель переменного тока

Двигатель переменного тока (AC) редко используется в мобильных роботах. В первую очередь потому, что большинство из них рассчитаны на питание постоянным током (DC) от батареи.

мотор переменного тока AC

Двигатели переменного тока используются в основном в промышленных помещениях , где требуется очень высокий крутящий момент. Прежде всего там, где моторы подключены к электросети.

Читайте также:  Приора 127 двигатель стук

Двигатели постоянного тока

Двигатели постоянного тока MotorDC моторы имеют разнообразные формы и размеры. Хотя большинство из них цилиндрические. Они имеют выходной вал, который вращается на высоких скоростях, обычно в 5 000 до 10 000 оборотов в минуту. Хотя двигатели постоянного тока очень быстро вращаются, большинство из них не очень мощные. Такие двигатели для робота имеют низкий крутящий момент.

Для того, чтобы снизить скорость и увеличить крутящий момент, могут быть добавлены редукторы. Чтобы установить двигатель на робота, нужно закрепить корпус двигателя на раме робота. По этой причине двигатели для робота часто имеют монтажные отверстия, которые обычно располагаются на лицевой стороне двигателя. Следовательно, они могут быть установлены перпендикулярно к поверхности.

Двигатели постоянного тока могут работать по часовой стрелке (CW) и против вращения часовой стрелки. Угловое движение вала может быть измерено с помощью энкодеров или потенциометров.

Мотор редуктор постоянного тока

Это двигатель постоянного тока в сочетании с коробкой передач. Она работает, чтобы уменьшить скорость двигателя и увеличить крутящий момент. Например, двигатель постоянного тока вращается со скоростью 10000 оборотов в минуту и достигает 0.001 Н*м крутящего момента. Если добавить понижающую передачу 100:1 (сто к одному) мы снизим скорость в 100 раз. В результате 10000 / 100 = 100 об / мин и увеличим крутящий момент в 100 раз (0.001 х 100 = 0.1 Н*м).

мотор редуктор постоянного тока DC

Основные виды понижающих передач это:

  1. зубчатая передача
  2. ременная
  3. планетарная
  4. червячная

Червячная передача позволяет получить очень высокое передаточное число с помощью всего одного этап. И также не дает выходному валу двигаться, если двигатель не работает.

Серводвигатель

Тип используемого вами двигателя зависит от типа движения, которое вы хотите.

R / C или хобби сервомотор

Часто сервомоторы этого типа могут поворачиваться на угол до 180 градусов. Они поворачиваются на определенный угол поворота. И часто используются в более дорогих моделях дистанционного управления средствами для управления или контроля полета.

Теперь они используются в различных приложениях. Цены на эти сервоприводы значительно сократилось, и разнообразие (разные размеры, технологии и сила) увеличилось. Общим фактором для большинства сервоприводов заключается в том, что большинство использует только поворот около 180 градусов.
R / C сервомотор включает в себя двигатель постоянного тока, редуктор, электронику и роторный потенциометр, который и измеряет угол

Электроника и потенциометр работают синхронно, чтобы управлять двигателем и останавливать выходной вал по заданному углу. Эти моторы обычно имеют три провода: земля, напряжение В, и управляющий импульс. Управляющий импульс, как правило, снимается с регулятора мотора сервопривода. Хобби сервомотор — это новый тип сервопривода. Он предполагает непрерывное вращение и обратную связь по положению. Все сервоприводы могут вращаться как вправо, так и влево.

Промышленные серводвигатели

Промышленный серводвигатель с приводом управляется иначе, чем хобби мотор и чаще встречаются на очень больших машинах. Промышленный сервомотор обычно трехфазный и состоит из двигателя переменного тока, редуктора и энкодера. Установленный энкодер обеспечивает обратную связь по угловому положению и скорости.

промышленный сервомотор

Эти моторы редко используются в мобильных роботах из-за их веса, размеров, стоимости и сложности. Вы можете увидеть промышленные серводвигатели на мощный промышленных манипуляторах. Возможно их использование на очень больших роботизированных автомобилях.

Шаговые двигатели

Шаговый двигатель вращается на определенные “ступени” (на самом деле, конкретные градусы). Число ступеней и размер шага зависит от нескольких факторов. Большинство шаговых двигателей не включает в себя передачи. Так как это двигатели постоянного тока и вращающий момент низок.

Правильно настроенный шаговый двигатель может вращаться вправо и влево и может быть установлен в требуемое угловое положение. Есть однополярные и биполярные типы шаговых двигателей. Одним заметным недостатком шаговых двигателей является то, что если мотор не работает, трудно быть уверенным в угле пуска двигателя.

Если добавить передачу, то шаговый двигатель имеет тот же самый эффект, как и добавление передачи на двигатель постоянного тока: Он увеличивает крутящий момент и снижает угловую скорость. Поскольку скорость уменьшается на передаточное отношение, то размер шага также уменьшается на тот же фактор.

Линейные приводы

Линейный привод производит линейное движение (движение вдоль одной прямой линии) и имеют три основные отличительные механические характеристики.

  1. Минимальное и максимальное расстояние, на которое стержень может сдвинуть вал (в мм или дюймах)
  2. Их сила (в кг или фунты)
  3. Их скорость (в м/с или дюйм/с)

DC Линейный Привод

Линейный DC привод часто состоит из двигателя постоянного тока, подключенного к червячной передаче. Когда двигатель вращается, то крепление на винте будет либо ближе или дальше от двигателя. По существу червячная передача преобразует вращательное движение в линейное движение.

линейный привод

Некоторые линейные приводы постоянного тока включают в себя линейный потенциометр, который обеспечивает линейную обратную связь. Для того, чтобы остановить привод от полного разрушения, многие производители включают концевые выключатели на обоих концах. Как правило, для отключения электропитания привода при нажатии на них. Линейные приводы постоянного тока бывают в самых разнообразных размеров и типов.

Читайте также:  Смерть под колесами своей машины

Соленоиды

Соленоид состоит из катушки намотанной вокруг подвижного сердечника. Когда катушка находится под напряжением, сердечник отталкивается от магнитного поля и производит движения в одном направлении. Несколько катушек или некоторые механические механизмы потребуются для того, чтобы обеспечить движение в двух направлениях.

Соленоиды обычно очень маленькие, но их скорость очень большая. Сила зависит в основном от размера катушки и от того какой силы ток идет через него. Этот тип привода используется в клапанах или системах фиксации. В таких системах, как правило, нет обратной связи по положению (сердечник либо полностью убирается или полностью выдвинут).

Пневматические и гидравлические приводы

Пневматические и гидравлические приводы с помощью воздуха или жидкости (например воды или масла), служат для того чтобы двигаться линейно. Эти типы приводов могут иметь очень длинный ход, большую мощность и высокую скорость.

пневматический или гидравлический привод

Для того чтобы эксплуатироваться они требуют использование жидкости компрессора. Это делает их более сложными в эксплуатации, чем обычные электрические приводы. Они имеют большую мощность, скорости и, как правило, большой размер. И в первую очередь используются в промышленном оборудовании.

Выбор привода

Важно отметить, что постоянно появляются новые и инновационные технологии, и нет ничего постоянного. Также обратите внимание, что один привод может выполнять очень разные задачи в разных условиях. Например, с различной механикой. Привод, который производит линейное движение, может быть использован для поворота объекта и назад (как у автомобильных щеток для очистки стекла).

Роботы с колесами или гусеницами

Приводные двигатели для робота должны перемещать вес всего робота и, скорее всего, потребуется понижающая передача. Большинство роботов используют притормаживание колесами одного борта. В то время как автомобили или грузовики, как правило, используют рулевое управление.

роботизированная платформа на колесах

Если вы выберете бортовой поворот, то DC моторы с редуктором являются идеальным выбором для роботов с колесами или гусеницами. Ведь они обеспечивают непрерывное вращение, и могут иметь необязательную обратную связь по положению с помощью оптических энкодеров. Их очень легко программировать и использовать.

Если вы хотите использовать рулевое управление, то вам понадобится один приводной двигатель и один двигатель, чтобы управлять передними колесами. Поворот ограничен определенным углом и можно применить R / C сервомотор.

Робот манипулятор

Мотор используется, чтобы поднять или повернуть тяжелый вес. Подъем веса требует значительно больше энергии, чем перемещение веса на плоской поверхности. Скорость должна быть принесена в жертву для того, чтобы получить крутящий момент.

робот манипулятор

Поэтому лучше всего использовать редуктор с высоким передаточным отношением и мощный двигатель постоянного тока или линейного привода DC. Можно рассмотреть возможность использования системы (либо червячных передач, или струбцин). Что предотвращает груз от падения в случае потери управления.

Сервоприводы двигателей

Используются если диапазон ограничен до 180 градусов и крутящий момент не является существенным. Р/С мотора сервопривода идеально подходит для таких задач. Серводвигатели предлагаются с различными крутящими моментами и размерами и обеспечивают угловые обратной связи по положению.

Лучше использовать потенциометр, и некоторые специализированные оптические энкодеры. Р/С сервоприводы используются все больше и больше для создания небольших шагающих роботов.

Шаговые двигатели

Используются, когда угол поворота должен быть очень точными. Шаговые двигатели для робота в сочетании с контроллером шагового электродвигателя могут дать очень точное угловое движение. Иногда предпочтительнее серводвигатели, поскольку они обеспечивают непрерывное вращение. Однако, некоторые профессиональные цифровые серводвигатели используют оптические энкодеры. В результате они обладают очень высокой точностью.

Линейные приводы

Линейные приводы являются лучшими для перемещения объектов и расположения их по прямой линии. Они отличаются разнообразием размеров и конфигураций. Для очень быстрого движения можно рассматривать пневматику или соленоиды. Для очень высоких мощностей можно рассматривать линейные приводы постоянного тока и также гидравлику.

Практический пример

  • В уроке 1 мы определили цель нашего проекта, чтобы понять какого типа мобильного робота можно сконструировать при небольшом бюджете.
  • В уроке 2 мы решили, что мы хотели небольшую платформу на колесах. Во-первых, давайте определим тип привода, который потребуется для создания робота.

Для этого нужно ответить на пять вопросов:

  1. Это привод используется для перемещения колесного робота?
    Да. Нужен мотор-редуктор с управлением при помощи притормаживания одного борта. Это означает, что каждое колесо будет нужно оснастить собственным мотором.
  2. Двигатели для робота используются, чтобы поднять или повернуть тяжелый вес?
    Нет, настольная платформа не должна быть тяжелой.
  3. Диапазон движения ограничивается на 180 градусов?
    Нет, колеса могут постоянно вращаться.
  4. Угол должны быть точными?
    Нет, наш робот не требует позиционной обратной связи.
  5. Это движение по прямой?
    Нет, поскольку мы хотим, чтобы робот вращаться и двигаться во всех направлениях.

Большой мотор Lego EV3

Всем этим требованиям соответствует большой мотор из базового набора LEGO MINDSTORMS Education EV3.

Технические характеристики большого мотора EV3

Adblock
detector